metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(5-carb­­oxy­benzene-1,3-di­carboxyl­ato-κO1)(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsysww@163.com

(Received 15 May 2011; accepted 23 May 2011; online 28 May 2011)

In the title compound, [Zn(C9H4O6)(C12H12N2)(H2O)2], the ZnII atom is five-coordinated by two N atoms from a 4,4′-dimethyl-2,2′-bipyridine ligand, one O atom from a 5-carb­oxy­benzene-1,3-dicarboxyl­ate ligand and two water mol­ecules in a distorted trigonal–bipyramidal geometry. The complex mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds and partly overlapping ππ inter­actions [centroid–centroid distance = 4.017 (2) Å] into a three-dimensional supra­molecular network.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180.]). For O—H⋯O hydrogen bonds, see: Desiraju et al. (2004[Desiraju, G. R. (2004). Hydrogen Bonding in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]). For ππ inter­actions, see: Zang et al. (2010[Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. pp. 8022-8032.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H4O6)(C12H12N2)(H2O)2]

  • Mr = 493.76

  • Triclinic, [P \overline 1]

  • a = 9.1938 (9) Å

  • b = 10.7978 (8) Å

  • c = 11.5842 (7) Å

  • α = 85.238 (6)°

  • β = 72.960 (7)°

  • γ = 69.760 (8)°

  • V = 1031.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.798

  • 7701 measured reflections

  • 3607 independent reflections

  • 3246 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.05

  • 3607 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6i 0.82 1.79 2.603 (2) 171
O1W—H1WA⋯O1ii 0.84 1.81 2.635 (2) 165
O1W—H1WB⋯O2iii 0.84 1.75 2.593 (2) 171
O2W—H2WA⋯O2iv 0.85 1.86 2.688 (2) 166
O2W—H2WB⋯O4v 0.84 1.79 2.633 (2) 176
Symmetry codes: (i) -x-1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z+1; (v) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Supramolecular coordination assemblies have received much attention not only for their variety of architectures but also for the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). A great number of multidentate organic ligands such as organic aromatic polycarboxylate ligands and N-donor building blocks have been successfully employed in the generation of many interesting systems (Zang et al., 2006). To further explore the influence of multicarboxylate and N-donor ligands on the properties and construction of coordination compounds, we undertake the synthetic and structural studies on a Zn(II) complex based on benzene-1,3,5-tricarboxylic acid (H3btc) and 4,4'-dimethyl-2,2'-bipyridine (dmbpy), Zn(Hbtc)(bmbpy)(H2O)2.

As shown in Fig. 1, the asymmetric unit consists of one ZnII atom, one Hbtc ligand, one dmbpy ligand and two coordinated water molecules. The Hbtc ligand occurs in a form with an intact COOH group. The metal ion is coordinated by one O atom from the Hbtc ligand, two O atoms of water molecules and two N atoms from the chelating dmbpy ligand, completing a distorted trigonal bipyramidal geometry. N1, O1W and O2W comprise the equatorial plane, while O3 and N2 occupy the axial positions. A pair of symmetry-related complex molecules are associated together through O1W—H1WA···O1i hydrogen bonds (Table 1) [symmetry code: (i) 1-x, 1-y, 1-z], forming a dimeric unit, in which ππ stacking interaction occurs with a centroid–centroid distance of 4.017 (2)Å between two face-to-face aromatic rings (phenyl ring and pyridine ring bearing the N1 atom). Adjacent dimeric units are connected by O2W—H2WA···O2ii hydrogen bonds [symmetry code: (ii) -x, 1-y, 1-z], resulting in a one-dimensional supramolecular chain running along the a-axis (Fig. 2). As depicted in Fig. 3, the chains are extended to a two-dimensional supramolecular structure through O1W—H1WB···O2iii and O2W—H2WB···O4iv hydrogen bonds [symmetry codes: (iii) x, 1+y, z; (iv) -x, 2-y, 1-z]. The hydroxyl group and the uncoordinated O atom of the intact COOH group serve as donor and accepter, respectively. Neighboring such carboxylic groups are linked together through O5—H5A···O6v hydrogen bonds [symmetry code: (v) -1-x, 1-y, 2-z]. Thus, the layers are interconnected into a three-dimensional supramolecular structure (Fig. 4).

Related literature top

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2006). For O—H···O hydrogen bonds, see: Desiraju et al. (2004). For ππ interactions, see: Zang et al. (2010).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of benzene-1,3,5-tricarboxylic acid (0.011 g, 0.05 mmol), 4,4'-dimethyl-2,2'-bipyridine (0.009 g, 0.05 mmol), Zn(NO3)2.6H2O (0.015 g, 0.05 mmol) and NaOH (0.004 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 d, and then cooled to room temperature. Colorless block crystals of the title compound were obtained in 68% yield based on zinc.

Refinement top

H atoms on C atoms and hydroxyl O atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O). Water H atoms were obtained from a difference Fourier map and restrained to ideal configuration of the water molecules and fixed in the final stages of refinement, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Irrespective H atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the supramolecular chain in the title compound. Dashed lines represent hydrogen bonds and ππ interactions. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1+x, y, z.]
[Figure 3] Fig. 3. A view of the two-dimensional supramolecular structure in the title compound. Dashed lines represent hydrogen bonds. [Symmetry codes: (iii) x, 1+y, z; (iv) -x, 2-y, 1-z.]
[Figure 4] Fig. 4. The three-dimensional supramolecular structure connected by interlayer hydrogen bonds (dashed lines).
Diaqua(5-carboxybenzene-1,3-dicarboxylato-κO1)(4,4'-dimethyl-2,2'- bipyridine-κ2N,N')zinc top
Crystal data top
[Zn(C9H4O6)(C12H12N2)(H2O)2]Z = 2
Mr = 493.76F(000) = 508
Triclinic, P1Dx = 1.590 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1938 (9) ÅCell parameters from 4795 reflections
b = 10.7978 (8) Åθ = 3.5–29.1°
c = 11.5842 (7) ŵ = 1.24 mm1
α = 85.238 (6)°T = 296 K
β = 72.960 (7)°Block, colorless
γ = 69.760 (8)°0.21 × 0.20 × 0.19 mm
V = 1031.40 (16) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3607 independent reflections
Radiation source: fine-focus sealed tube3246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.780, Tmax = 0.798k = 1212
7701 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
3607 reflections(Δ/σ)max = 0.009
292 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C9H4O6)(C12H12N2)(H2O)2]γ = 69.760 (8)°
Mr = 493.76V = 1031.40 (16) Å3
Triclinic, P1Z = 2
a = 9.1938 (9) ÅMo Kα radiation
b = 10.7978 (8) ŵ = 1.24 mm1
c = 11.5842 (7) ÅT = 296 K
α = 85.238 (6)°0.21 × 0.20 × 0.19 mm
β = 72.960 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3246 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.798Rint = 0.032
7701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3607 reflectionsΔρmin = 0.28 e Å3
292 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29959 (3)0.80971 (2)0.41463 (2)0.02705 (12)
O10.3344 (2)0.21247 (17)0.51057 (18)0.0451 (5)
O20.1654 (2)0.11417 (16)0.62226 (18)0.0417 (5)
O30.1815 (2)0.68960 (16)0.50550 (15)0.0353 (4)
O40.0341 (2)0.81358 (16)0.64551 (17)0.0442 (5)
O50.4023 (2)0.60517 (15)0.91517 (15)0.0378 (4)
H5A0.48100.59910.96840.057*
O60.3417 (2)0.38720 (15)0.90916 (15)0.0377 (4)
O1W0.34722 (19)0.87467 (15)0.55069 (14)0.0310 (4)
H1WA0.44740.86050.53490.046*
H1WB0.29200.95510.56680.046*
O2W0.1124 (2)0.92769 (15)0.35858 (16)0.0380 (4)
H2WA0.02540.91060.37650.057*
H2WB0.09121.01010.35810.057*
N10.4831 (2)0.64334 (18)0.31684 (17)0.0294 (4)
N20.4584 (2)0.89292 (18)0.27789 (18)0.0313 (5)
C10.2061 (3)0.2140 (2)0.5853 (2)0.0295 (5)
C20.0560 (3)0.7072 (2)0.5941 (2)0.0277 (5)
C30.3103 (3)0.4905 (2)0.8723 (2)0.0257 (5)
C40.0878 (3)0.3468 (2)0.6388 (2)0.0244 (5)
C50.0533 (3)0.3572 (2)0.7292 (2)0.0261 (5)
H50.07700.28160.75900.031*
C60.1601 (3)0.4811 (2)0.7756 (2)0.0254 (5)
C70.1244 (3)0.5936 (2)0.73168 (19)0.0246 (5)
H70.19550.67590.76350.030*
C80.0167 (3)0.5847 (2)0.6404 (2)0.0241 (5)
C90.1210 (3)0.4604 (2)0.5950 (2)0.0256 (5)
H90.21540.45320.53370.031*
C100.4961 (3)0.5176 (2)0.3444 (2)0.0352 (6)
H100.41840.50140.41010.042*
C110.6183 (3)0.4113 (2)0.2805 (2)0.0378 (6)
H110.62140.32590.30270.045*
C120.7357 (3)0.4315 (2)0.1840 (2)0.0341 (6)
C130.8735 (4)0.3183 (3)0.1126 (3)0.0495 (7)
H13A0.93770.26850.16380.074*
H13B0.93940.35190.04630.074*
H13C0.83130.26210.08210.074*
C140.7234 (3)0.5617 (2)0.1547 (2)0.0319 (6)
H140.80020.57940.08940.038*
C150.5972 (3)0.6652 (2)0.2222 (2)0.0269 (5)
C160.5789 (3)0.8062 (2)0.1965 (2)0.0278 (5)
C170.6761 (3)0.8476 (2)0.0971 (2)0.0374 (6)
H170.75600.78550.04090.045*
C180.6557 (3)0.9805 (2)0.0801 (2)0.0384 (6)
C190.7596 (4)1.0268 (3)0.0278 (3)0.0604 (9)
H19A0.85311.03030.00910.091*
H19B0.69901.11320.04890.091*
H19C0.79300.96660.09460.091*
C200.5346 (3)1.0673 (3)0.1677 (3)0.0436 (7)
H200.51781.15740.16160.052*
C210.4393 (3)1.0211 (2)0.2634 (2)0.0398 (6)
H210.35811.08150.32040.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02375 (18)0.02181 (17)0.03013 (18)0.00935 (12)0.00191 (12)0.00227 (11)
O10.0236 (10)0.0374 (10)0.0601 (12)0.0075 (8)0.0085 (9)0.0093 (9)
O20.0267 (9)0.0214 (8)0.0687 (13)0.0072 (7)0.0004 (9)0.0071 (8)
O30.0319 (10)0.0301 (9)0.0400 (10)0.0185 (7)0.0036 (8)0.0062 (7)
O40.0418 (11)0.0204 (8)0.0559 (12)0.0106 (8)0.0066 (9)0.0036 (8)
O50.0326 (10)0.0273 (9)0.0371 (10)0.0088 (8)0.0132 (8)0.0019 (7)
O60.0350 (10)0.0280 (9)0.0419 (10)0.0160 (8)0.0064 (8)0.0056 (8)
O1W0.0220 (9)0.0236 (8)0.0419 (10)0.0063 (7)0.0016 (8)0.0038 (7)
O2W0.0299 (10)0.0224 (8)0.0614 (12)0.0118 (7)0.0109 (9)0.0087 (8)
N10.0298 (11)0.0249 (10)0.0308 (10)0.0114 (8)0.0025 (9)0.0018 (8)
N20.0269 (11)0.0269 (10)0.0334 (11)0.0088 (9)0.0008 (9)0.0014 (9)
C10.0227 (13)0.0257 (12)0.0387 (14)0.0066 (10)0.0073 (11)0.0044 (10)
C20.0272 (13)0.0243 (12)0.0321 (13)0.0128 (10)0.0062 (11)0.0086 (10)
C30.0262 (12)0.0240 (12)0.0236 (11)0.0099 (10)0.0011 (10)0.0021 (9)
C40.0211 (12)0.0230 (11)0.0294 (12)0.0099 (9)0.0048 (10)0.0009 (9)
C50.0281 (13)0.0202 (11)0.0304 (12)0.0121 (10)0.0052 (10)0.0046 (9)
C60.0237 (12)0.0256 (11)0.0258 (11)0.0107 (10)0.0033 (10)0.0029 (9)
C70.0232 (12)0.0196 (11)0.0270 (12)0.0075 (9)0.0008 (10)0.0003 (9)
C80.0220 (12)0.0240 (11)0.0256 (11)0.0099 (9)0.0040 (10)0.0037 (9)
C90.0198 (12)0.0273 (12)0.0286 (12)0.0122 (9)0.0004 (10)0.0016 (10)
C100.0410 (15)0.0290 (13)0.0341 (13)0.0167 (11)0.0040 (12)0.0064 (11)
C110.0471 (17)0.0233 (12)0.0422 (15)0.0103 (11)0.0149 (13)0.0060 (11)
C120.0369 (15)0.0291 (13)0.0359 (14)0.0065 (11)0.0144 (12)0.0011 (11)
C130.0533 (19)0.0326 (14)0.0516 (17)0.0004 (13)0.0134 (15)0.0062 (13)
C140.0288 (14)0.0317 (13)0.0305 (13)0.0088 (10)0.0033 (11)0.0012 (10)
C150.0244 (12)0.0296 (12)0.0249 (12)0.0096 (10)0.0043 (10)0.0030 (10)
C160.0250 (13)0.0258 (12)0.0303 (12)0.0090 (10)0.0050 (10)0.0033 (10)
C170.0323 (14)0.0343 (13)0.0343 (14)0.0098 (11)0.0054 (12)0.0006 (11)
C180.0371 (15)0.0327 (13)0.0425 (15)0.0160 (12)0.0046 (12)0.0101 (12)
C190.063 (2)0.0489 (18)0.062 (2)0.0310 (16)0.0061 (17)0.0128 (16)
C200.0425 (16)0.0268 (13)0.0559 (17)0.0132 (12)0.0060 (14)0.0082 (12)
C210.0383 (15)0.0256 (12)0.0456 (15)0.0087 (11)0.0008 (13)0.0008 (11)
Geometric parameters (Å, º) top
Zn1—O1W1.9922 (16)C7—C81.392 (3)
Zn1—O2W2.0018 (16)C7—H70.9300
Zn1—O32.0115 (16)C8—C91.389 (3)
Zn1—N12.1159 (19)C9—H90.9300
Zn1—N22.1826 (19)C10—C111.374 (4)
O1—C11.238 (3)C10—H100.9300
O2—C11.262 (3)C11—C121.370 (4)
O3—C21.268 (3)C11—H110.9300
O4—C21.235 (3)C12—C141.391 (3)
O5—C31.275 (3)C12—C131.506 (4)
O5—H5A0.8200C13—H13A0.9600
O6—C31.257 (3)C13—H13B0.9600
O1W—H1WA0.8444C13—H13C0.9600
O1W—H1WB0.8446C14—C151.387 (3)
O2W—H2WA0.8460C14—H140.9300
O2W—H2WB0.8421C15—C161.487 (3)
N1—C101.341 (3)C16—C171.382 (3)
N1—C151.346 (3)C17—C181.386 (3)
N2—C211.336 (3)C17—H170.9300
N2—C161.346 (3)C18—C201.386 (4)
C1—C41.516 (3)C18—C191.501 (4)
C2—C81.505 (3)C19—H19A0.9600
C3—C61.480 (3)C19—H19B0.9600
C4—C51.384 (3)C19—H19C0.9600
C4—C91.386 (3)C20—C211.374 (4)
C5—C61.394 (3)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.384 (3)
O1W—Zn1—O2W117.76 (7)C7—C8—C2120.5 (2)
O1W—Zn1—O399.49 (7)C4—C9—C8121.6 (2)
O2W—Zn1—O394.51 (7)C4—C9—H9119.2
O1W—Zn1—N1115.84 (7)C8—C9—H9119.2
O2W—Zn1—N1124.77 (8)N1—C10—C11123.3 (2)
O3—Zn1—N189.06 (7)N1—C10—H10118.3
O1W—Zn1—N293.17 (7)C11—C10—H10118.3
O2W—Zn1—N289.03 (7)C12—C11—C10119.9 (2)
O3—Zn1—N2163.37 (7)C12—C11—H11120.1
N1—Zn1—N275.66 (7)C10—C11—H11120.1
C2—O3—Zn1133.53 (15)C11—C12—C14117.2 (2)
C3—O5—H5A109.5C11—C12—C13121.7 (2)
Zn1—O1W—H1WA110.1C14—C12—C13121.0 (2)
Zn1—O1W—H1WB111.0C12—C13—H13A109.5
H1WA—O1W—H1WB112.2C12—C13—H13B109.5
Zn1—O2W—H2WA119.9H13A—C13—H13B109.5
Zn1—O2W—H2WB120.2C12—C13—H13C109.5
H2WA—O2W—H2WB109.6H13A—C13—H13C109.5
C10—N1—C15117.7 (2)H13B—C13—H13C109.5
C10—N1—Zn1124.60 (16)C15—C14—C12120.5 (2)
C15—N1—Zn1117.70 (14)C15—C14—H14119.7
C21—N2—C16118.1 (2)C12—C14—H14119.7
C21—N2—Zn1125.98 (17)N1—C15—C14121.4 (2)
C16—N2—Zn1115.76 (15)N1—C15—C16115.7 (2)
O1—C1—O2125.7 (2)C14—C15—C16123.0 (2)
O1—C1—C4117.5 (2)N2—C16—C17121.5 (2)
O2—C1—C4116.8 (2)N2—C16—C15114.79 (19)
O4—C2—O3126.4 (2)C17—C16—C15123.7 (2)
O4—C2—C8118.0 (2)C16—C17—C18120.8 (2)
O3—C2—C8115.6 (2)C16—C17—H17119.6
O6—C3—O5123.0 (2)C18—C17—H17119.6
O6—C3—C6119.6 (2)C17—C18—C20116.4 (2)
O5—C3—C6117.45 (19)C17—C18—C19121.4 (2)
C5—C4—C9119.4 (2)C20—C18—C19122.2 (2)
C5—C4—C1121.50 (19)C18—C19—H19A109.5
C9—C4—C1119.1 (2)C18—C19—H19B109.5
C4—C5—C6119.9 (2)H19A—C19—H19B109.5
C4—C5—H5120.0C18—C19—H19C109.5
C6—C5—H5120.0H19A—C19—H19C109.5
C7—C6—C5120.0 (2)H19B—C19—H19C109.5
C7—C6—C3120.7 (2)C21—C20—C18120.3 (2)
C5—C6—C3119.27 (19)C21—C20—H20119.8
C6—C7—C8120.7 (2)C18—C20—H20119.8
C6—C7—H7119.6N2—C21—C20122.7 (2)
C8—C7—H7119.6N2—C21—H21118.6
C9—C8—C7118.4 (2)C20—C21—H21118.6
C9—C8—C2121.1 (2)
O1W—Zn1—O3—C257.8 (2)O4—C2—C8—C9173.5 (2)
O2W—Zn1—O3—C261.4 (2)O3—C2—C8—C95.7 (3)
N1—Zn1—O3—C2173.8 (2)O4—C2—C8—C75.3 (3)
N2—Zn1—O3—C2163.2 (2)O3—C2—C8—C7175.5 (2)
O1W—Zn1—N1—C1089.3 (2)C5—C4—C9—C80.6 (3)
O2W—Zn1—N1—C10105.6 (2)C1—C4—C9—C8179.8 (2)
O3—Zn1—N1—C1010.8 (2)C7—C8—C9—C40.3 (3)
N2—Zn1—N1—C10175.8 (2)C2—C8—C9—C4178.6 (2)
O1W—Zn1—N1—C1588.84 (17)C15—N1—C10—C110.6 (4)
O2W—Zn1—N1—C1576.23 (18)Zn1—N1—C10—C11178.77 (19)
O3—Zn1—N1—C15171.07 (17)N1—C10—C11—C120.7 (4)
N2—Zn1—N1—C152.30 (16)C10—C11—C12—C140.6 (4)
O1W—Zn1—N2—C2163.8 (2)C10—C11—C12—C13179.0 (2)
O2W—Zn1—N2—C2154.0 (2)C11—C12—C14—C150.5 (4)
O3—Zn1—N2—C21156.6 (2)C13—C12—C14—C15179.0 (2)
N1—Zn1—N2—C21179.6 (2)C10—N1—C15—C140.5 (3)
O1W—Zn1—N2—C16121.32 (17)Zn1—N1—C15—C14178.81 (18)
O2W—Zn1—N2—C16120.94 (18)C10—N1—C15—C16179.1 (2)
O3—Zn1—N2—C1618.3 (4)Zn1—N1—C15—C160.8 (3)
N1—Zn1—N2—C165.44 (17)C12—C14—C15—N10.5 (4)
Zn1—O3—C2—O43.8 (4)C12—C14—C15—C16179.1 (2)
Zn1—O3—C2—C8175.34 (15)C21—N2—C16—C173.1 (4)
O1—C1—C4—C5175.4 (2)Zn1—N2—C16—C17172.22 (19)
O2—C1—C4—C53.9 (3)C21—N2—C16—C15177.2 (2)
O1—C1—C4—C95.5 (3)Zn1—N2—C16—C157.5 (3)
O2—C1—C4—C9175.3 (2)N1—C15—C16—N25.6 (3)
C9—C4—C5—C60.3 (3)C14—C15—C16—N2174.0 (2)
C1—C4—C5—C6179.5 (2)N1—C15—C16—C17174.1 (2)
C4—C5—C6—C70.3 (3)C14—C15—C16—C176.2 (4)
C4—C5—C6—C3179.9 (2)N2—C16—C17—C182.2 (4)
O6—C3—C6—C7178.6 (2)C15—C16—C17—C18178.1 (2)
O5—C3—C6—C71.8 (3)C16—C17—C18—C200.2 (4)
O6—C3—C6—C51.8 (3)C16—C17—C18—C19179.6 (3)
O5—C3—C6—C5177.8 (2)C17—C18—C20—C211.6 (4)
C5—C6—C7—C80.7 (3)C19—C18—C20—C21178.2 (3)
C3—C6—C7—C8179.8 (2)C16—N2—C21—C201.7 (4)
C6—C7—C8—C90.3 (3)Zn1—N2—C21—C20173.1 (2)
C6—C7—C8—C2179.2 (2)C18—C20—C21—N20.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.792.603 (2)171
O1W—H1WA···O1ii0.841.812.635 (2)165
O1W—H1WB···O2iii0.841.752.593 (2)171
O2W—H2WA···O2iv0.851.862.688 (2)166
O2W—H2WB···O4v0.841.792.633 (2)176
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C9H4O6)(C12H12N2)(H2O)2]
Mr493.76
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.1938 (9), 10.7978 (8), 11.5842 (7)
α, β, γ (°)85.238 (6), 72.960 (7), 69.760 (8)
V3)1031.40 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.780, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
7701, 3607, 3246
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.05
No. of reflections3607
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.821.792.603 (2)171
O1W—H1WA···O1ii0.841.812.635 (2)165
O1W—H1WB···O2iii0.841.752.593 (2)171
O2W—H2WA···O2iv0.851.862.688 (2)166
O2W—H2WB···O4v0.841.792.633 (2)176
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x, y+2, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Henan Province (No. 2010 A140009) and the Inter­national Technology Cooperation Project of Science and Technology Department of Henan Province of China (No. 104300510044).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. pp. 8022–8032.  CSD CrossRef Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds