metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­tetra­pyridine­copper(II) dicyanamidate pyridine disolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 3 March 2011; accepted 28 April 2011; online 7 May 2011)

In the crystal structure of the title compound, [CuCl(C5H5N)4][N(CN)2]·2C6H5N, the copper(II) cations are coordinated by one chloride anion and four N-bonded pyridine ligands into discrete complexes. The copper(II) cation shows a square-pyramidal coordination environment, with the chloride anion in the apical position. However, there is one additional chloride anion at 3.0065 (9) Å, leading to a disorted octa­hedral coordination mode for copper. The copper(II) cation, the chloride ligand and the central N atom of the dicyanamide anion are located on twofold rotation axes. Two pyridine solvent molecules are observed in general positions.

Related literature

For background to this work, see: Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). J. Inorg. Chem. 48, 6896-6903.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Dalton Trans. pp. 7975-7984.]). For structures of transition metal dicyanamides, see: Wriedt & Näther (2011[Wriedt, M. & Näther, C. (2011). Dalton Trans. pp. 886-898.]) and for a related structure, see: Potočňák et al. (2006)[Potočňák, I., Burčák, M., Dušek, M. & Fejfarová, K. (2006). Acta Cryst. E62, 1009-1011.]. For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C5H5N)4](C2N3)·2C6H5N

  • Mr = 639.64

  • Orthorhombic, I b a 2

  • a = 15.2859 (6) Å

  • b = 17.6577 (9) Å

  • c = 11.4818 (9) Å

  • V = 3099.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 170 K

  • 0.48 × 0.18 × 0.08 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998)[Stoe & Cie (1998). X-SHAPE and IPDS program package. Stoe & Cie, Darmstadt, Germany.] Tmin = 0.825, Tmax = 0.941

  • 16623 measured reflections

  • 3708 independent reflections

  • 3220 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.03

  • 3708 reflections

  • 198 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1771 Friedel pairs

  • Flack parameter: 0.00 (2)

Data collection: IPDS (Stoe & Cie, 1998)[Stoe & Cie (1998). X-SHAPE and IPDS program package. Stoe & Cie, Darmstadt, Germany.]; cell refinement: IPDS[Stoe & Cie (1998). X-SHAPE and IPDS program package. Stoe & Cie, Darmstadt, Germany.]; data reduction: IPDS[Stoe & Cie (1998). X-SHAPE and IPDS program package. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CIFTAB in SHELXTL.

Supporting information


Comment top

In our recent work we have shown that thermal decomposition reactions are an elegant route for the discovery and preparation of new ligand-deficient coordination polymers based on transition metal thiocyanates and N-donor ligands (Wriedt et al. 2009a,b). In further investigations we have shown that new transition metal dicyanamides can also be prepared by this route (Wriedt & Näther, 2011). In order to prepare new precursors with pyridine ligands we have reacted copper (II) chloride, sodium dicyanamide and pyridine. In this reaction single crystals of the title compound were obtained by accident, which were characterized by single crystal X-ray diffraction.

In the crystal structure of the title compound each copper (II) cation is coordinated by one chloride anion and by four pyridine ligands into discrete complexes which are located on a 2-fold rotation axis (Fig. 1). The copper(II) cations are in a slightly distorted square pyramidal coordination with two Cu—N distances of 2.0511 (16) Å, two Cu—N distances of 2.0374 (16) Å and one Cu—Cl distance of 2.7344 (9) Å. The angles around the copper(II) cations ranges from 87.76 (6) ° to 91.59 (6) ° (Tab. 1). There is one additional chloride anion at 3.0065 (9) Å. If this distance is considered in copper coordination the coordination polyhedron can be described as a slightly disorted octahedron. The discrete complexes are stacked into columns that elongate in the direction of the c-axis (Fig. 2). Between these columns additional pyridine molecules as well as non-coordinated dicyanamide anions are located (Fig. 2). The distances between the discrete complexe cations [CuCl(pyridine)]+ and the non-coordinated [N(CN2)]- anions amounts to 7.469 (3) Å and the shortest Cu···Cu distances amount to 5.7409 (5) Å.

It must be noted that according to a search in the CCDC database (ConQuest Ver.1.12.2010) (Allen, 2002) compounds with copper (II) cations, chloro anions and dicyanamide are unkown but with 1,10-phenanthroline one compound is reported (Potočňák et al., 2006).

Related literature top

For background of this work, see: Wriedt et al. (2009a,b). For structures of transition metal dicyanamides, see: Wriedt & Näther (2011) and for a related structure, see: Potočňák et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Copper (II) chloride dihydrate (CuCl2 × 2 H2O) and sodium dicyanamide (Na(dca)) were obtained from Alfa Aesar and pyridine was obtained from Riedel de Haen. All chemicals were used without further purification. 0.25 mmol (42.62 mg) CuCl2 × 2 H2O and 0.5 mmol (44.51 mg) Na(dca) were reacted in 0.5 ml pyridine. Blue single crystals of the title compound were obtained after one day.

Refinement top

H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) and C—H distances of 0.95 Å using a riding model. The absolute structure was determined on the basis of 1740 Friedel pairs but the crystal investigated was racemically twinned. Therefore, a twin refinement was performed (BASF parameter: 0.25 (2).

Computing details top

Data collection: IPDS (Stoe & Cie, 1998); cell refinement: IPDS (Stoe & Cie, 1998); data reduction: IPDS (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x+1, -y+1, z; ii = -x+2, -y+1, z.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the crystallographic c-axis.
Chloridotetrapyridinecopper(II) dicyanamidate pyridine disolvate top
Crystal data top
[CuCl(C5H5N)4](C2N3)·2C6H5NF(000) = 1324
Mr = 639.64Dx = 1.371 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 16623 reflections
a = 15.2859 (6) Åθ = 2.7–28°
b = 17.6577 (9) ŵ = 0.83 mm1
c = 11.4818 (9) ÅT = 170 K
V = 3099.1 (3) Å3Block, blue
Z = 40.48 × 0.18 × 0.08 mm
Data collection top
Stoe IPDS-1
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube3220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ scansθmax = 28.0°, θmin = 2.7°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 2020
Tmin = 0.825, Tmax = 0.941k = 2323
16623 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.71 e Å3
3708 reflectionsΔρmin = 0.56 e Å3
198 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0056 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1740 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (2)
Crystal data top
[CuCl(C5H5N)4](C2N3)·2C6H5NV = 3099.1 (3) Å3
Mr = 639.64Z = 4
Orthorhombic, Iba2Mo Kα radiation
a = 15.2859 (6) ŵ = 0.83 mm1
b = 17.6577 (9) ÅT = 170 K
c = 11.4818 (9) Å0.48 × 0.18 × 0.08 mm
Data collection top
Stoe IPDS-1
diffractometer
3708 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
3220 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.941Rint = 0.046
16623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.71 e Å3
S = 1.03Δρmin = 0.56 e Å3
3708 reflectionsAbsolute structure: Flack (1983), 1740 Friedel pairs
198 parametersAbsolute structure parameter: 0.00 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.78178 (3)0.01901 (12)
Cl10.50000.50001.01993 (7)0.01916 (17)
N10.51436 (10)0.38455 (9)0.77683 (18)0.0175 (3)
C20.49213 (17)0.26597 (16)0.6798 (2)0.0291 (6)
H20.46640.23830.61770.035*
C30.54374 (17)0.22991 (13)0.7620 (2)0.0310 (5)
H30.55380.17690.75700.037*
C40.58055 (16)0.27172 (12)0.8518 (2)0.0288 (5)
H40.61600.24790.90910.035*
C50.56461 (14)0.34873 (12)0.8560 (2)0.0222 (4)
H50.59000.37750.91720.027*
N110.63287 (11)0.50796 (9)0.77505 (18)0.0169 (3)
C110.67644 (14)0.54903 (11)0.8549 (2)0.0193 (4)
H110.64400.57680.91120.023*
C120.76675 (16)0.55225 (14)0.8580 (2)0.0257 (5)
H120.79600.58240.91440.031*
C130.81395 (14)0.51051 (14)0.7770 (3)0.0294 (5)
H130.87610.51140.77770.035*
C140.76982 (15)0.46773 (14)0.6956 (2)0.0264 (5)
H140.80100.43860.63970.032*
C150.67906 (14)0.46793 (13)0.6968 (2)0.0210 (4)
H150.64850.43880.64040.025*
C10.47896 (16)0.34335 (13)0.6904 (2)0.0225 (4)
H10.44350.36830.63420.027*
N210.79940 (15)0.79986 (11)0.5241 (2)0.0355 (5)
C210.7555 (2)0.75937 (16)0.6032 (2)0.0369 (6)
H210.72490.78590.66250.044*
C220.7521 (2)0.68134 (18)0.6039 (3)0.0413 (7)
H220.71930.65520.66150.050*
C230.79745 (19)0.64167 (15)0.5190 (3)0.0444 (7)
H230.79700.58790.51780.053*
C240.8428 (2)0.68182 (16)0.4368 (3)0.0401 (7)
H240.87410.65660.37670.048*
C250.8419 (2)0.75980 (16)0.4435 (3)0.0378 (6)
H250.87400.78700.38640.045*
N300.93807 (17)0.38709 (14)0.5329 (4)0.0628 (8)
C300.96901 (19)0.44145 (16)0.5161 (4)0.0527 (9)
N311.00000.50000.4511 (5)0.0835 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01452 (16)0.01243 (16)0.0301 (2)0.00084 (13)0.0000.000
Cl10.0229 (3)0.0194 (3)0.0151 (4)0.0001 (3)0.0000.000
N10.0189 (8)0.0146 (7)0.0188 (7)0.0016 (6)0.0009 (7)0.0003 (7)
C20.0405 (16)0.0208 (12)0.0259 (13)0.0078 (10)0.0045 (9)0.0045 (7)
C30.0379 (13)0.0177 (10)0.0375 (15)0.0035 (10)0.0098 (10)0.0000 (8)
C40.0334 (12)0.0230 (11)0.0299 (11)0.0106 (10)0.0009 (10)0.0057 (9)
C50.0251 (11)0.0206 (9)0.0210 (9)0.0034 (9)0.0008 (8)0.0023 (8)
N110.0163 (6)0.0175 (8)0.0169 (8)0.0007 (6)0.0013 (7)0.0001 (6)
C110.0228 (10)0.0172 (9)0.0179 (9)0.0039 (8)0.0000 (8)0.0005 (8)
C120.0233 (11)0.0296 (11)0.0241 (10)0.0074 (9)0.0035 (9)0.0011 (9)
C130.0178 (8)0.0386 (13)0.0317 (11)0.0009 (9)0.0028 (11)0.0067 (10)
C140.0220 (12)0.0289 (12)0.0282 (11)0.0027 (10)0.0037 (9)0.0021 (10)
C150.0214 (11)0.0214 (10)0.0201 (9)0.0007 (9)0.0021 (9)0.0017 (8)
C10.0274 (11)0.0200 (10)0.0202 (8)0.0050 (9)0.0013 (9)0.0002 (9)
N210.0417 (12)0.0274 (9)0.0375 (10)0.0003 (9)0.0084 (11)0.0080 (9)
C210.0384 (15)0.0408 (16)0.0314 (12)0.0044 (13)0.0074 (9)0.0092 (10)
C220.0395 (15)0.0433 (16)0.0412 (15)0.0056 (13)0.0035 (11)0.0181 (12)
C230.0511 (16)0.0258 (11)0.0562 (17)0.0071 (12)0.0008 (14)0.0103 (12)
C240.0467 (19)0.0304 (13)0.0431 (14)0.0018 (13)0.0081 (11)0.0023 (11)
C250.0447 (17)0.0327 (13)0.0362 (12)0.0063 (12)0.0129 (11)0.0090 (11)
N300.0391 (13)0.0320 (12)0.117 (2)0.0062 (11)0.0058 (16)0.0096 (19)
C300.0252 (11)0.0321 (15)0.101 (3)0.0010 (12)0.0075 (16)0.0040 (16)
N310.105 (5)0.091 (4)0.054 (3)0.054 (3)0.0000.000
Geometric parameters (Å, º) top
Cu1—N112.0374 (16)C13—C141.378 (4)
Cu1—N11i2.0374 (16)C13—H130.9500
Cu1—N12.0511 (16)C14—C151.387 (3)
Cu1—N1i2.0511 (16)C14—H140.9500
Cu1—Cl12.7344 (9)C15—H150.9500
N1—C11.345 (3)C1—H10.9500
N1—C51.348 (3)N21—C251.333 (4)
C2—C31.385 (4)N21—C211.337 (3)
C2—C11.386 (4)C21—C221.379 (4)
C2—H20.9500C21—H210.9500
C3—C41.387 (3)C22—C231.386 (5)
C3—H30.9500C22—H220.9500
C4—C51.382 (3)C23—C241.368 (4)
C4—H40.9500C23—H230.9500
C5—H50.9500C24—C251.379 (4)
N11—C151.344 (3)C24—H240.9500
N11—C111.346 (3)C25—H250.9500
C11—C121.382 (3)N30—C301.087 (4)
C11—H110.9500C30—N311.360 (4)
C12—C131.389 (4)N31—C30ii1.360 (4)
C12—H120.9500
N11—Cu1—N11i175.66 (12)C11—C12—H12120.7
N11—Cu1—N187.76 (6)C13—C12—H12120.7
N11i—Cu1—N192.12 (6)C14—C13—C12119.39 (19)
N11—Cu1—N1i92.12 (6)C14—C13—H13120.3
N11i—Cu1—N1i87.76 (6)C12—C13—H13120.3
N1—Cu1—N1i176.83 (12)C13—C14—C15118.8 (2)
N11—Cu1—Cl192.17 (6)C13—C14—H14120.6
N11i—Cu1—Cl192.17 (6)C15—C14—H14120.6
N1—Cu1—Cl191.59 (6)N11—C15—C14122.2 (2)
N1i—Cu1—Cl191.59 (6)N11—C15—H15118.9
C1—N1—C5118.27 (18)C14—C15—H15118.9
C1—N1—Cu1121.01 (15)N1—C1—C2122.6 (2)
C5—N1—Cu1120.58 (15)N1—C1—H1118.7
C3—C2—C1118.4 (2)C2—C1—H1118.7
C3—C2—H2120.8C25—N21—C21115.6 (2)
C1—C2—H2120.8N21—C21—C22123.9 (3)
C2—C3—C4119.5 (2)N21—C21—H21118.1
C2—C3—H3120.2C22—C21—H21118.1
C4—C3—H3120.2C21—C22—C23118.8 (2)
C5—C4—C3118.6 (2)C21—C22—H22120.6
C5—C4—H4120.7C23—C22—H22120.6
C3—C4—H4120.7C24—C23—C22118.4 (2)
N1—C5—C4122.5 (2)C24—C23—H23120.8
N1—C5—H5118.7C22—C23—H23120.8
C4—C5—H5118.7C23—C24—C25118.3 (3)
C15—N11—C11118.64 (17)C23—C24—H24120.9
C15—N11—Cu1120.85 (14)C25—C24—H24120.9
C11—N11—Cu1120.31 (15)N21—C25—C24125.0 (2)
N11—C11—C12122.3 (2)N21—C25—H25117.5
N11—C11—H11118.9C24—C25—H25117.5
C12—C11—H11118.9N30—C30—N31156.9 (5)
C11—C12—C13118.7 (2)C30ii—N31—C30113.5 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[CuCl(C5H5N)4](C2N3)·2C6H5N
Mr639.64
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)170
a, b, c (Å)15.2859 (6), 17.6577 (9), 11.4818 (9)
V3)3099.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.48 × 0.18 × 0.08
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.825, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
16623, 3708, 3220
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.03
No. of reflections3708
No. of parameters198
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.56
Absolute structureFlack (1983), 1740 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: IPDS (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 2008, SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), CIFTAB in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Bensch for access to his experimental facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPotočňák, I., Burčák, M., Dušek, M. & Fejfarová, K. (2006). Acta Cryst. E62, 1009–1011.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). X-SHAPE and IPDS program package. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M. & Näther, C. (2011). Dalton Trans. pp. 886–898.  CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). J. Inorg. Chem. 48, 6896–6903.  CrossRef CAS Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Dalton Trans. pp. 7975–7984.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds