organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1363-o1364

3-Allyl-1-{[3-(4-nitro­phen­yl)-4,5-di­hydro-1,3-oxazol-5-yl]meth­yl}-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, France, cUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille-1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: afrakssou@yahoo.fr

(Received 17 April 2011; accepted 2 May 2011; online 7 May 2011)

The mol­ecular structure of the title compound, C28H20N4O6, consists of three fused six-membered rings (A,B,C) and one five-membered ring (D). The latter is linked to an isoxazole ring (E) via a methyl­ene unit. A 4-nitro-phenyl substituent (F) is attached to the isoxazole. The fused five and six-membered rings (C,D) are almost coplanar with an r.m.s. deviation of 0.0345 Å and make a dihedral angle of 9.40 (8)° with ring A. The isoxazole and 4-nitro-phenyl rings (E,F) are also almost coplanar with the imidazole and the fused adjacent ring (C,D), forming a dihedral angle of 11.4 (6)°. The crystal packing displays inter­molecular C—H⋯O hydrogen bonding. An intra­molecular C—H⋯O inter­action also occurs.

Related literature

For the biological activity of anthraquinone derivatives, see: Agarwal et al. (2000[Agarwal, S. K., Singh, S. S., Verma, S. & Kumar, S. (2000). J. Ethnopharmacol. 72, 43-46.]); Barnard et al. (1995[Barnard, D. L., Fairbairn, D. W., O'Neill, K. L., Gage, T. L. & Sidwell, R. W. (1995). Antivir. Res. 28, 317-321.]); Chen et al. (2007[Chen, S. H., Lin, K. Y., Chang, C. C., Fang, C. L. & Lin, C. P. (2007). Food Chem. Toxicol. 45, 2296-2303.]); Haug et al. (2003[Haug, H. S., Chiou, J. F., Fong, Y., Hou, C. C., Lu, Y. C., Wang, J. Y., Shih, J. W., Pan, Y. R. & Lin, J. J. (2003). J. Med. Chem. 46, 3300-3307.]); Iizuka et al. (2004[Iizuka, A., Iijima, O. T., Kondo, K., Itakura, H., Yoshie, F., Miyamoto, H., Kubo, M., Higuchi, M., Takeda, H. & Matsumiy, T. (2004). J. Ethnopharmacol. 91, 89-94.]); Koyamaa et al. (2002[Koyamaa, J., Morita, I., Tagahara, K., Nobukuni, Y., Mukainaka, T., Kuchide, M., Tokuda, H. & Nishino, H. (2002). Cancer Lett. 182, 135-139.]); Su et al. (2005[Su, Y. T., Chang, H. L., Shyue, S. K. & Hsu, S. L. (2005). Biochem. Pharmacol. 70, 229-241.]); Wu et al. (2005[Wu, Y. W., Gao, W. Y., Xiao, X. H. & Liu, Y. (2005). Thermochim. Acta, 429, 167-170.]); Yen et al. (2000[Yen, G. C., Duh, P. D. & Chuang, D. Y. (2000). Food Chem. 70, 437-441.]). For a derivative of the title compound, see: Afrakssou et al. (2010[Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.]). For the use of related compounds as synthetic dyes, see: Simi et al. (1995[Simi, S., Morelli, S., Gervasi, P. G. & Rainaldi, G. (1995). Mutat. Res. 347, 151-156.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N4O6

  • Mr = 508.48

  • Monoclinic, P 21 /n

  • a = 10.0780 (3) Å

  • b = 22.7094 (6) Å

  • c = 11.2729 (3) Å

  • β = 113.809 (1)°

  • V = 2360.41 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2009)[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.704, Tmax = 0.745

  • 47772 measured reflections

  • 4828 independent reflections

  • 2998 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.00

  • 4828 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.60 3.516 (2) 169
C18—H18B⋯O2ii 0.97 2.37 3.333 (2) 170
C26—H26B⋯O1i 0.97 2.55 3.379 (3) 144
C16—H16A⋯O2 0.97 2.10 2.902 (2) 141
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, a number of pharmacological tests revealed that anthraquinone derivatives present various biological activities including antifungal (Agarwal et al., 2000), antimicrobial (Wu et al., 2005), anticancer (Koyamaa et al., 2002; Su et al., 2005; Chen et al., 2007), antioxidant (Yen et al., 2000; Iizuka et al., 2004), and antihuman cytomegalovirus activity (Barnard et al., 1995).

Aminoanthraquinone derivatives are a class of compounds largely used as phytotherapeutic drugs (laxatives, sedatives and antikidney and antibladder stones) and colouring agents (in the food, cosmetics and textile) (Simi et al., 1995). Anthraquinone derivatives have also been utilized for the activation of human telomerase reverse transcriptase expression (Haug et al., 2003), and they act as telomerase inhibitors or activators.

Due to their importance, in a previous study we have synthesized 1,3-diallyl-1H-anthra[1,2-d]imidazole-2,6,11(3H)-trione (Afrakssou et al., 2010). Here we have focused on the reactivity of the exocyclic C=C bond of the allyl substituents towards nitriloxides. The latter are produced as intermediates in the dehydrohalogenation of 4-nitrobenzaldoxime by a solution of sodium hypochlorite. The oxime then reacts with 1,3-diallyl-1H-anthra[1,2-d] imidazole-2,6,11(3H)-trione in a biphasic medium (water-chloroform) at 0°C during 4 h to a unique cycloadduct 3-allyl-1-[3 -(4-nitro-phenyl)-4,5-dihydro-isoxazole-5-ylmethyl] -1,3-dihydro-anthra [1,2 d] imidazole-2,6,11-trione (Scheme 1). Due to this reaction sequence a racemate of the title compound which shows a stereogenic center at C(17) is formed.

Fig.1 shows the molecular plot of the crystal structure of the title compound. The isoxazole (E) adopts an envelope conformation on C(17) as indicated by the Cremer & Pople (1975) puckering parameters Q2 = 0.2117 (19) Å and ϕ2 = 141.6 (5)°. Moreover, ring (B) has a twisted conformation, with puckering parameters Q = 0.1480 (19) Å, θ = 114.6 (8) ° and ϕ = 139.7 (8) °, whereas all other rings are planar. The dihedral angles between fused five and six-membered rings (C,D) and the isoxazole ring (E) is 11.4 (6)°. The torsion angle between C27—C26—N2—C1 is 87.42 (0.22)°. In the crystal, adjacent molecules are linked by intermolecular C–H···O hydrogen bonding as shown in Fig. 2 and Table 1.

Related literature top

For the biological activity of anthraquinone derivatives, see: Agarwal et al. (2000); Barnard et al. (1995); Chen et al. (2007); Haug et al. (2003); Iizuka et al. (2004); Koyamaa et al. (2002); Su et al. (2005); Wu et al. (2005); Yen et al. (2000). For a derivative of the title compound, see: Afrakssou et al. (2010). For the use of related compounds as synthetic dyes, see: Simi et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 1,3-diallyl-1H-anthra[1,2-d] imidazole-2,6,11(3H)-trione (0.3 g, 0.87 mmol) and 4-nitrobenzaldoxime (0.36 g, 2.17 mmol) in chloroform (16 ml) was added dropwise a 24% sodium hypochlorite solution (8 ml) at 273 K. Stirring was continued for 4 h. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (1/1) as eluent. The title compound is formed as a racemate (Yield: 35%). Orange crystals are isolated after the solvent was allowed to evaporate.

Refinement top

All H atoms were located in a difference map and treated as riding with C—H = 0.93 Å for all aromatic H atoms, 0.97 Å for methylene and 0.98Å for methine with Uiso(H) = 1.2 Ueq aromatic, methylene and methine. The C-bound H atoms of the allyl group were positioned geometrically and treated as riding with C—H = 0.93 Å (H27, H28A and H28B) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq.

The reflections (0 2 0) and (0 1 1) were omitted because the difference between their calculated and observed intensities are very large. They are affected by the beamstop.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular plot of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial packing view showing the intermolecular C–H···O interactions.
3-Allyl-1-{[3-(4-nitrophenyl)-4,5-dihydro-1,3-oxazol-5-yl]methyl}-1H- anthra[1,2-d]imidazole-2,6,11(3H)-trione top
Crystal data top
C28H20N4O6F(000) = 1056
Mr = 508.48Dx = 1.431 Mg m3
Monoclinic, P21/nMelting point: 471 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.0780 (3) ÅCell parameters from 7395 reflections
b = 22.7094 (6) Åθ = 2.4–21.5°
c = 11.2729 (3) ŵ = 0.10 mm1
β = 113.809 (1)°T = 296 K
V = 2360.41 (11) Å3Prism, yellow
Z = 40.40 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
4828 independent reflections
Radiation source: fine-focus sealed tube2998 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS, Bruker, 2009)
h = 1212
Tmin = 0.704, Tmax = 0.745k = 2828
47772 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4447P]
where P = (Fo2 + 2Fc2)/3
4828 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C28H20N4O6V = 2360.41 (11) Å3
Mr = 508.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0780 (3) ŵ = 0.10 mm1
b = 22.7094 (6) ÅT = 296 K
c = 11.2729 (3) Å0.40 × 0.14 × 0.11 mm
β = 113.809 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4828 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2009)
2998 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.745Rint = 0.048
47772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.00Δρmax = 0.12 e Å3
4828 reflectionsΔρmin = 0.15 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6321 (2)0.82375 (9)0.19097 (19)0.0612 (5)
C20.85135 (19)0.84194 (8)0.35084 (17)0.0552 (4)
C30.81023 (17)0.89317 (8)0.27367 (15)0.0502 (4)
C40.90411 (17)0.94182 (7)0.30538 (15)0.0475 (4)
C51.04177 (18)0.93398 (7)0.40936 (15)0.0505 (4)
C61.0776 (2)0.88249 (8)0.48157 (16)0.0593 (5)
H61.16830.87940.54980.071*
C70.9829 (2)0.83582 (8)0.45530 (17)0.0622 (5)
H71.00640.80180.50550.075*
C81.1555 (2)0.97997 (8)0.44241 (17)0.0574 (4)
C91.1231 (2)1.03401 (8)0.36364 (17)0.0556 (4)
C100.98508 (19)1.04342 (7)0.26723 (16)0.0527 (4)
C110.86591 (19)1.00068 (8)0.24546 (16)0.0524 (4)
C121.2303 (2)1.07627 (9)0.3858 (2)0.0712 (5)
H121.32241.07030.45050.085*
C131.2012 (3)1.12668 (10)0.3127 (2)0.0793 (6)
H131.27301.15500.32920.095*
C141.0663 (3)1.13554 (9)0.2151 (2)0.0754 (6)
H141.04821.16920.16410.090*
C150.9574 (2)1.09440 (8)0.19255 (19)0.0651 (5)
H150.86581.10080.12750.078*
C160.59135 (18)0.91052 (8)0.05248 (16)0.0576 (5)
H16A0.59820.95270.06690.069*
H16B0.49000.89950.02260.069*
C170.64489 (18)0.89559 (9)0.05152 (17)0.0588 (5)
H170.62230.85460.07970.071*
C180.58172 (18)0.93738 (8)0.16582 (17)0.0617 (5)
H18A0.56280.91770.24740.074*
H18B0.49350.95600.16950.074*
C190.70447 (18)0.98060 (8)0.13153 (16)0.0553 (4)
C200.69973 (18)1.03873 (8)0.18912 (16)0.0546 (4)
C210.5711 (2)1.06028 (9)0.28290 (18)0.0640 (5)
H210.48821.03700.31200.077*
C220.5655 (2)1.11605 (9)0.33315 (19)0.0701 (5)
H220.47921.13050.39550.084*
C230.6886 (2)1.15008 (8)0.2904 (2)0.0662 (5)
C240.8184 (2)1.12962 (10)0.1991 (2)0.0727 (6)
H240.90111.15300.17180.087*
C250.8234 (2)1.07410 (9)0.14903 (19)0.0655 (5)
H250.91061.05990.08750.079*
C260.7429 (2)0.74050 (9)0.3414 (2)0.0749 (6)
H26A0.64420.72700.31760.090*
H26B0.79230.73850.43510.090*
C270.8169 (2)0.70030 (9)0.2829 (2)0.0776 (6)
H270.82220.66080.30620.093*
C280.8743 (3)0.71473 (12)0.2031 (3)0.0922 (7)
H28A0.87180.75370.17680.111*
H28B0.91820.68620.17200.111*
N10.67395 (14)0.88059 (7)0.17487 (13)0.0554 (4)
N20.73969 (16)0.80148 (7)0.30080 (15)0.0633 (4)
N30.82302 (15)0.96221 (7)0.04143 (14)0.0606 (4)
N40.6801 (3)1.20974 (9)0.3438 (2)0.0907 (6)
O10.52115 (15)0.79872 (6)0.12021 (14)0.0768 (4)
O20.73990 (14)1.01619 (6)0.18463 (13)0.0677 (4)
O31.27476 (15)0.97262 (6)0.53085 (13)0.0835 (4)
O40.80057 (12)0.90603 (6)0.00001 (12)0.0663 (4)
O50.5638 (2)1.22624 (8)0.4262 (2)0.1111 (6)
O60.7864 (2)1.24061 (9)0.3026 (3)0.1445 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (11)0.0657 (13)0.0690 (12)0.0039 (10)0.0245 (10)0.0025 (10)
C20.0513 (11)0.0581 (11)0.0572 (10)0.0025 (9)0.0231 (9)0.0016 (8)
C30.0439 (10)0.0582 (11)0.0491 (9)0.0041 (8)0.0193 (8)0.0003 (8)
C40.0464 (10)0.0516 (10)0.0463 (9)0.0034 (8)0.0204 (8)0.0033 (7)
C50.0488 (10)0.0559 (10)0.0464 (9)0.0008 (8)0.0188 (8)0.0058 (8)
C60.0528 (11)0.0668 (12)0.0495 (9)0.0057 (9)0.0115 (8)0.0018 (9)
C70.0623 (12)0.0614 (12)0.0578 (11)0.0031 (10)0.0190 (9)0.0077 (9)
C80.0540 (11)0.0654 (12)0.0470 (9)0.0015 (9)0.0145 (9)0.0099 (8)
C90.0584 (11)0.0547 (11)0.0557 (10)0.0037 (9)0.0251 (9)0.0144 (8)
C100.0584 (11)0.0489 (10)0.0569 (10)0.0057 (8)0.0294 (9)0.0085 (8)
C110.0495 (11)0.0581 (11)0.0513 (9)0.0077 (9)0.0219 (8)0.0055 (8)
C120.0700 (13)0.0670 (13)0.0737 (13)0.0131 (11)0.0258 (11)0.0153 (10)
C130.0819 (16)0.0621 (14)0.1010 (17)0.0139 (12)0.0444 (14)0.0140 (12)
C140.0913 (17)0.0502 (11)0.0998 (16)0.0048 (11)0.0543 (14)0.0004 (11)
C150.0718 (13)0.0559 (11)0.0748 (12)0.0107 (10)0.0371 (11)0.0013 (9)
C160.0391 (9)0.0674 (11)0.0611 (11)0.0029 (8)0.0147 (8)0.0008 (9)
C170.0413 (10)0.0693 (12)0.0606 (10)0.0026 (9)0.0151 (8)0.0027 (9)
C180.0412 (10)0.0799 (13)0.0575 (10)0.0015 (9)0.0131 (8)0.0025 (9)
C190.0377 (10)0.0742 (12)0.0508 (9)0.0038 (9)0.0147 (8)0.0049 (9)
C200.0420 (10)0.0692 (12)0.0507 (9)0.0026 (8)0.0168 (8)0.0098 (8)
C210.0500 (11)0.0681 (13)0.0609 (11)0.0024 (9)0.0090 (9)0.0084 (9)
C220.0600 (13)0.0716 (13)0.0649 (12)0.0062 (11)0.0109 (10)0.0085 (10)
C230.0684 (14)0.0582 (12)0.0739 (12)0.0016 (10)0.0309 (11)0.0113 (10)
C240.0553 (13)0.0743 (14)0.0889 (14)0.0077 (11)0.0293 (11)0.0138 (12)
C250.0417 (10)0.0818 (14)0.0683 (12)0.0003 (10)0.0174 (9)0.0063 (10)
C260.0668 (13)0.0692 (13)0.0855 (14)0.0114 (11)0.0273 (11)0.0125 (11)
C270.0647 (14)0.0634 (13)0.0915 (16)0.0019 (11)0.0179 (12)0.0047 (11)
C280.0823 (16)0.0928 (17)0.1015 (18)0.0009 (14)0.0369 (15)0.0112 (14)
N10.0402 (8)0.0646 (10)0.0581 (8)0.0012 (7)0.0164 (7)0.0008 (7)
N20.0554 (10)0.0604 (10)0.0703 (10)0.0051 (8)0.0216 (8)0.0070 (8)
N30.0408 (8)0.0796 (11)0.0598 (9)0.0054 (8)0.0188 (7)0.0010 (8)
N40.0901 (16)0.0661 (13)0.1166 (17)0.0044 (12)0.0426 (14)0.0096 (12)
O10.0551 (8)0.0801 (10)0.0868 (9)0.0157 (7)0.0197 (7)0.0064 (7)
O20.0528 (8)0.0662 (8)0.0803 (9)0.0133 (6)0.0230 (7)0.0037 (6)
O30.0639 (9)0.0907 (11)0.0692 (8)0.0144 (8)0.0008 (7)0.0015 (7)
O40.0420 (7)0.0861 (10)0.0672 (8)0.0113 (6)0.0182 (6)0.0102 (7)
O50.1209 (16)0.0787 (12)0.1199 (14)0.0141 (11)0.0344 (13)0.0101 (10)
O60.1056 (16)0.0775 (12)0.233 (3)0.0174 (11)0.0507 (16)0.0068 (14)
Geometric parameters (Å, º) top
C1—O11.221 (2)C16—H16B0.9700
C1—N21.371 (2)C17—O41.456 (2)
C1—N11.392 (2)C17—C181.518 (2)
C2—C71.379 (2)C17—H170.9800
C2—N21.384 (2)C18—C191.502 (2)
C2—C31.411 (2)C18—H18A0.9700
C3—C41.404 (2)C18—H18B0.9700
C3—N11.405 (2)C19—N31.286 (2)
C4—C51.420 (2)C19—C201.463 (3)
C4—C111.477 (2)C20—C211.390 (2)
C5—C61.387 (2)C20—C251.396 (2)
C5—C81.483 (2)C21—C221.379 (3)
C6—C71.376 (2)C21—H210.9300
C6—H60.9300C22—C231.373 (3)
C7—H70.9300C22—H220.9300
C8—O31.224 (2)C23—C241.378 (3)
C8—C91.472 (3)C23—N41.471 (3)
C9—C121.390 (3)C24—C251.374 (3)
C9—C101.393 (2)C24—H240.9300
C10—C151.392 (2)C25—H250.9300
C10—C111.486 (2)C26—N21.455 (2)
C11—O21.2264 (19)C26—C271.490 (3)
C12—C131.371 (3)C26—H26A0.9700
C12—H120.9300C26—H26B0.9700
C13—C141.375 (3)C27—C281.294 (3)
C13—H130.9300C27—H270.9300
C14—C151.384 (3)C28—H28A0.9300
C14—H140.9300C28—H28B0.9300
C15—H150.9300N3—O41.408 (2)
C16—N11.460 (2)N4—O61.206 (3)
C16—C171.514 (2)N4—O51.224 (2)
C16—H16A0.9700
O1—C1—N2126.88 (18)O4—C17—H17110.8
O1—C1—N1126.32 (18)C16—C17—H17110.8
N2—C1—N1106.80 (16)C18—C17—H17110.8
C7—C2—N2128.61 (17)C19—C18—C1799.82 (14)
C7—C2—C3123.44 (17)C19—C18—H18A111.8
N2—C2—C3107.93 (15)C17—C18—H18A111.8
C4—C3—N1134.81 (15)C19—C18—H18B111.8
C4—C3—C2119.47 (15)C17—C18—H18B111.8
N1—C3—C2105.71 (15)H18A—C18—H18B109.5
C3—C4—C5116.42 (15)N3—C19—C20119.80 (16)
C3—C4—C11124.85 (15)N3—C19—C18113.39 (16)
C5—C4—C11118.57 (15)C20—C19—C18126.82 (15)
C6—C5—C4121.74 (16)C21—C20—C25118.73 (18)
C6—C5—C8117.06 (16)C21—C20—C19120.55 (17)
C4—C5—C8121.17 (15)C25—C20—C19120.70 (16)
C7—C6—C5121.98 (16)C22—C21—C20120.41 (18)
C7—C6—H6119.0C22—C21—H21119.8
C5—C6—H6119.0C20—C21—H21119.8
C6—C7—C2116.76 (17)C23—C22—C21119.46 (19)
C6—C7—H7121.6C23—C22—H22120.3
C2—C7—H7121.6C21—C22—H22120.3
O3—C8—C9120.70 (17)C22—C23—C24121.52 (19)
O3—C8—C5120.92 (17)C22—C23—N4118.7 (2)
C9—C8—C5118.36 (16)C24—C23—N4119.8 (2)
C12—C9—C10119.54 (18)C25—C24—C23118.87 (19)
C12—C9—C8120.01 (17)C25—C24—H24120.6
C10—C9—C8120.45 (16)C23—C24—H24120.6
C15—C10—C9119.50 (17)C24—C25—C20120.99 (18)
C15—C10—C11119.50 (17)C24—C25—H25119.5
C9—C10—C11120.97 (16)C20—C25—H25119.5
O2—C11—C4122.39 (16)N2—C26—C27113.34 (18)
O2—C11—C10119.36 (16)N2—C26—H26A108.9
C4—C11—C10118.15 (15)C27—C26—H26A108.9
C13—C12—C9120.4 (2)N2—C26—H26B108.9
C13—C12—H12119.8C27—C26—H26B108.9
C9—C12—H12119.8H26A—C26—H26B107.7
C12—C13—C14120.4 (2)C28—C27—C26126.6 (2)
C12—C13—H13119.8C28—C27—H27116.7
C14—C13—H13119.8C26—C27—H27116.7
C13—C14—C15120.2 (2)C27—C28—H28A120.0
C13—C14—H14119.9C27—C28—H28B120.0
C15—C14—H14119.9H28A—C28—H28B120.0
C14—C15—C10120.0 (2)C1—N1—C3109.62 (14)
C14—C15—H15120.0C1—N1—C16117.89 (14)
C10—C15—H15120.0C3—N1—C16131.04 (15)
N1—C16—C17112.46 (14)C1—N2—C2109.85 (15)
N1—C16—H16A109.1C1—N2—C26122.97 (16)
C17—C16—H16A109.1C2—N2—C26126.32 (16)
N1—C16—H16B109.1C19—N3—O4109.50 (14)
C17—C16—H16B109.1O6—N4—O5123.0 (2)
H16A—C16—H16B107.8O6—N4—C23118.8 (2)
O4—C17—C16108.55 (14)O5—N4—C23118.2 (2)
O4—C17—C18104.60 (14)N3—O4—C17107.87 (12)
C16—C17—C18111.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.603.516 (2)169
C18—H18B···O2ii0.972.373.333 (2)170
C26—H26B···O1i0.972.553.379 (3)144
C16—H16A···O20.972.102.902 (2)141
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC28H20N4O6
Mr508.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.0780 (3), 22.7094 (6), 11.2729 (3)
β (°) 113.809 (1)
V3)2360.41 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2009)
Tmin, Tmax0.704, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
47772, 4828, 2998
Rint0.048
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.00
No. of reflections4828
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.603.516 (2)169
C18—H18B···O2ii0.972.373.333 (2)170
C26—H26B···O1i0.972.553.379 (3)144
C16—H16A···O20.972.102.902 (2)141
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+2, z.
 

References

First citationAfrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgarwal, S. K., Singh, S. S., Verma, S. & Kumar, S. (2000). J. Ethnopharmacol. 72, 43–46.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarnard, D. L., Fairbairn, D. W., O'Neill, K. L., Gage, T. L. & Sidwell, R. W. (1995). Antivir. Res. 28, 317–321.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. H., Lin, K. Y., Chang, C. C., Fang, C. L. & Lin, C. P. (2007). Food Chem. Toxicol. 45, 2296–2303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHaug, H. S., Chiou, J. F., Fong, Y., Hou, C. C., Lu, Y. C., Wang, J. Y., Shih, J. W., Pan, Y. R. & Lin, J. J. (2003). J. Med. Chem. 46, 3300–3307.  Web of Science PubMed Google Scholar
First citationIizuka, A., Iijima, O. T., Kondo, K., Itakura, H., Yoshie, F., Miyamoto, H., Kubo, M., Higuchi, M., Takeda, H. & Matsumiy, T. (2004). J. Ethnopharmacol. 91, 89–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoyamaa, J., Morita, I., Tagahara, K., Nobukuni, Y., Mukainaka, T., Kuchide, M., Tokuda, H. & Nishino, H. (2002). Cancer Lett. 182, 135–139.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimi, S., Morelli, S., Gervasi, P. G. & Rainaldi, G. (1995). Mutat. Res. 347, 151–156.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSu, Y. T., Chang, H. L., Shyue, S. K. & Hsu, S. L. (2005). Biochem. Pharmacol. 70, 229–241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Y. W., Gao, W. Y., Xiao, X. H. & Liu, Y. (2005). Thermochim. Acta, 429, 167–170.  CAS Google Scholar
First citationYen, G. C., Duh, P. D. & Chuang, D. Y. (2000). Food Chem. 70, 437–441.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1363-o1364
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds