organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­fluoro-1-[3-(2,2,2-tri­fluoro­acet­yl)azulen-1-yl]ethanone

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 18 April 2011; accepted 10 May 2011; online 14 May 2011)

There are two mol­ecules in the asymmetric unit of the title compound, C14H6F6O2, in which the azulene systems possess an almost planar geometry with maximum deviations of 0.0438 (15) and 0.0396 (14) Å. Besides intra- and inter­molecular C—H⋯O and C—H⋯F inter­actions, the structure displays three F⋯F contacts [2.793 (2), 2.8820 (17) and 2.9181 (16) Å]. Furthermore, a characteristic azulene π-stacking is observed with an alternating sequence of electron-rich five-membered rings and electron-deficient seven-membered rings [centroid–centroid distances = 3.5413 (12), 3.6847 (12), 3.5790 (12) and 3.7718 (12) Å].

Related literature

For the synthesis, see: Mathias & Overberger (1980[Mathias, L. J. & Overberger, C. G. (1980). J. Org. Chem. 45, 1701-1703.]); Zielinski et al. (2008[Zielinski, T., Kedziorek, M. & Jurczak, J. (2008). Chem. Eur. J. 14, 838-846.]). For the crystal structure of the parent azulene, see: Robertson et al. (1962[Robertson, J. M., Shearer, H. M. M., Sim, G. A. & Watson, D. G. (1962). Acta Cryst. 15, 1-8.]). For halogen inter­actions in mol­ecular crystal structures, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]); Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105-136. Berlin, Heidelberg: Springer.]).

[Scheme 1]

Experimental

Crystal data
  • C14H6F6O2

  • Mr = 320.19

  • Triclinic, [P \overline 1]

  • a = 7.1634 (2) Å

  • b = 10.8681 (4) Å

  • c = 16.3286 (5) Å

  • α = 81.544 (2)°

  • β = 83.310 (2)°

  • γ = 80.009 (2)°

  • V = 1232.92 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.40 × 0.14 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.988

  • 20089 measured reflections

  • 5321 independent reflections

  • 3680 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.02

  • 5321 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F3 0.95 2.40 2.916 (2) 114
C2A—H2A⋯F3A 0.95 2.45 2.972 (2) 115
C2A—H2A⋯F5A 0.95 2.50 2.968 (2) 111
C5—H5⋯O2 0.95 2.31 2.988 (2) 127
C5A—H5A⋯O2A 0.95 2.33 3.001 (2) 127
C6—H6⋯O2Ai 0.95 2.52 3.236 (2) 133
C6A—H6A⋯O2i 0.95 2.47 3.160 (2) 130
C8—H8⋯F2Aii 0.95 2.45 3.358 (2) 160
C9—H9⋯O1 0.95 2.31 2.983 (2) 127
C9—H9⋯O1Aii 0.95 2.58 3.454 (2) 153
C9A—H9A⋯O1ii 0.95 2.50 3.352 (2) 149
C9A—H9A⋯O1A 0.95 2.31 2.993 (2) 128
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

The asymmetric unit of the crystal structure contains two molecules featuring planar azulene ring systems (Fig 1). In the crystallographic b and c directions the structure is stabilized by hydrogen bonding both between the carbonyl oxygen or fluorine atoms and hydrogen atoms of the electronic deficient seven-membered ring (Fig 2). The crystal structure is characterized by formation of molecular stacks along the crystallographic a-axis (Fig 3). Due to the inherent dipole character of the azulene ring system, the molecules are arranged in a head-to-tail fashion within the stacks. Each molecule in the asymmetric unit shows two different interactions to its stack neighbors, which leads to four different distances between the centroids Cg1···Cg2i, d = 3.5413 (12), Cg1···Cg2ii, d = 3.6847 (12), Cg1A···Cg2Aiii, d = 3.5790 (12), Cg1A···Cg2Aiv, d = 3.7718 (12). Furthermore, three halogen···halogen contacts were observed: F5···F5 [d = 2.7931 (23) Å, θ1 = θ2 = 145.79 (14)°], F3···F6A [d = 2.8820 (17), θ1 = 124.02 (11), θ2 = 113.52 (12)] and F6A···F6 [d = 2.9181 (16), θ1 = 161.89 (11), θ2 = 156.90 (12)]. Symmetry codes: (i) = -x, 2 - y, -z; (ii) = 1 - x, 2 - y, -z; (iii) 1 - x, 2 - y, 1 - z; (iv) 2 - x, 2 - y, 1 - z.

Related literature top

For the synthesis, see: Mathias & Overberger (1980); Zielinski et al. (2008). For the crystal structure of the parent azulene, see: Robertson et al. (1962). For halogen interactions in molecular crystal structures, see: Brammer et al. (2001); Metrangolo et al. (2008).

Experimental top

The title compound was prepared according to the literature procedure of Mathias et al. (1980). Crystallization by slow evaporation from acetone yielded suitable crystals after 3 days.

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing the atom numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular sheets within the packing of the title compound. Intermolecular interactions are represented as dashed lines.
[Figure 3] Fig. 3. Packing diagram viewed down the a axis, showing the stacking interactions of the azulene systems.
2,2,2-Trifluoro-1-[3-(2,2,2-trifluoroacetyl)azulen-1-yl]ethanone top
Crystal data top
C14H6F6O2Z = 4
Mr = 320.19F(000) = 640
Triclinic, P1Dx = 1.725 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1634 (2) ÅCell parameters from 6112 reflections
b = 10.8681 (4) Åθ = 2.9–28.9°
c = 16.3286 (5) ŵ = 0.18 mm1
α = 81.544 (2)°T = 100 K
β = 83.310 (2)°Rod, red
γ = 80.009 (2)°0.40 × 0.14 × 0.07 mm
V = 1232.92 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5321 independent reflections
Radiation source: fine-focus sealed tube3680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.933, Tmax = 0.988k = 1313
20089 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.5715P]
where P = (Fo2 + 2Fc2)/3
5321 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H6F6O2γ = 80.009 (2)°
Mr = 320.19V = 1232.92 (7) Å3
Triclinic, P1Z = 4
a = 7.1634 (2) ÅMo Kα radiation
b = 10.8681 (4) ŵ = 0.18 mm1
c = 16.3286 (5) ÅT = 100 K
α = 81.544 (2)°0.40 × 0.14 × 0.07 mm
β = 83.310 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3680 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.988Rint = 0.031
20089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
5321 reflectionsΔρmin = 0.31 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.39463 (18)0.60356 (13)0.19502 (8)0.0398 (3)
F20.2168 (2)0.64770 (12)0.30613 (7)0.0412 (3)
F30.09017 (18)0.61716 (11)0.19949 (7)0.0321 (3)
F40.36566 (18)0.57475 (11)0.07337 (8)0.0346 (3)
F50.05955 (18)0.59590 (11)0.05863 (7)0.0344 (3)
F60.2086 (2)0.60122 (12)0.18071 (7)0.0370 (3)
O10.2103 (2)0.88041 (15)0.24264 (9)0.0379 (4)
O20.1713 (2)0.84185 (14)0.17976 (8)0.0319 (4)
C10.2215 (3)0.84447 (19)0.10164 (11)0.0204 (4)
C20.2071 (3)0.76448 (18)0.04375 (11)0.0195 (4)
H20.19610.67780.05680.023*
C30.2114 (3)0.83168 (18)0.03648 (11)0.0192 (4)
C40.2344 (2)0.95792 (18)0.03047 (11)0.0188 (4)
C50.2515 (3)1.05229 (18)0.09710 (12)0.0213 (4)
H50.24131.02980.15030.026*
C60.2813 (3)1.17487 (19)0.09636 (12)0.0237 (4)
H60.28611.22540.14900.028*
C70.3050 (3)1.23385 (19)0.02918 (13)0.0246 (4)
H70.32511.31890.04240.030*
C80.3033 (3)1.18607 (19)0.05439 (13)0.0240 (4)
H80.32491.24270.09010.029*
C90.2749 (3)1.06782 (19)0.09354 (12)0.0223 (4)
H90.27771.05490.15220.027*
C100.2428 (3)0.96584 (18)0.05790 (11)0.0194 (4)
C110.2178 (3)0.8089 (2)0.19135 (12)0.0243 (4)
C120.2291 (3)0.6679 (2)0.22329 (12)0.0280 (5)
C130.1949 (3)0.78107 (19)0.11202 (12)0.0223 (4)
C140.2074 (3)0.6369 (2)0.10652 (12)0.0257 (5)
F1A0.82283 (17)0.62221 (12)0.68301 (8)0.0367 (3)
F2A0.6196 (2)0.67680 (12)0.78398 (7)0.0382 (3)
F3A0.52235 (17)0.63290 (11)0.67388 (7)0.0307 (3)
F4A0.86640 (18)0.55033 (11)0.42077 (8)0.0373 (3)
F5A0.56351 (17)0.59936 (12)0.41519 (8)0.0346 (3)
F6A0.7480 (2)0.57401 (12)0.30349 (8)0.0413 (3)
O1A0.6058 (2)0.90591 (14)0.71153 (8)0.0314 (4)
O2A0.7788 (2)0.80970 (14)0.29118 (8)0.0320 (4)
C1A0.6844 (3)0.85148 (18)0.57393 (11)0.0185 (4)
C2A0.6948 (3)0.76475 (18)0.51849 (11)0.0193 (4)
H2A0.67560.67970.53350.023*
C3A0.7379 (3)0.82104 (18)0.43672 (11)0.0187 (4)
C4A0.7618 (2)0.94807 (18)0.44046 (11)0.0175 (4)
C5A0.8140 (3)1.03354 (18)0.37289 (12)0.0203 (4)
H5A0.83011.00400.32020.024*
C6A0.8452 (3)1.15565 (18)0.37253 (12)0.0217 (4)
H6A0.88071.19840.31940.026*
C7A0.8324 (3)1.22506 (18)0.43871 (12)0.0218 (4)
H7A0.85771.30890.42430.026*
C8A0.7876 (3)1.18895 (18)0.52299 (12)0.0212 (4)
H8A0.78981.25070.55830.025*
C9A0.7401 (3)1.07489 (18)0.56275 (12)0.0203 (4)
H9A0.71331.06940.62140.024*
C10A0.7267 (2)0.96792 (17)0.52800 (11)0.0174 (4)
C11A0.6426 (3)0.82740 (19)0.66380 (12)0.0220 (4)
C12A0.6515 (3)0.6882 (2)0.70151 (12)0.0254 (4)
C13A0.7520 (3)0.76079 (19)0.36250 (12)0.0223 (4)
C14A0.7319 (3)0.6197 (2)0.37514 (13)0.0271 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0358 (7)0.0393 (8)0.0377 (7)0.0061 (6)0.0025 (6)0.0019 (6)
F20.0649 (9)0.0404 (8)0.0172 (6)0.0087 (7)0.0069 (6)0.0030 (5)
F30.0401 (7)0.0298 (7)0.0280 (7)0.0146 (6)0.0019 (5)0.0006 (5)
F40.0390 (7)0.0265 (7)0.0354 (7)0.0019 (6)0.0017 (6)0.0048 (5)
F50.0405 (8)0.0299 (7)0.0340 (7)0.0169 (6)0.0104 (6)0.0059 (5)
F60.0578 (9)0.0325 (7)0.0242 (7)0.0138 (6)0.0020 (6)0.0121 (5)
O10.0591 (11)0.0384 (9)0.0216 (8)0.0204 (8)0.0042 (7)0.0064 (7)
O20.0502 (10)0.0284 (8)0.0186 (8)0.0108 (7)0.0062 (7)0.0003 (6)
C10.0179 (9)0.0263 (11)0.0178 (10)0.0050 (8)0.0018 (7)0.0034 (8)
C20.0168 (9)0.0215 (10)0.0199 (10)0.0039 (8)0.0011 (7)0.0015 (8)
C30.0172 (9)0.0225 (10)0.0182 (9)0.0039 (8)0.0009 (7)0.0033 (7)
C40.0131 (9)0.0228 (10)0.0205 (10)0.0030 (7)0.0013 (7)0.0031 (8)
C50.0174 (10)0.0264 (11)0.0206 (10)0.0036 (8)0.0029 (7)0.0044 (8)
C60.0213 (10)0.0245 (11)0.0248 (11)0.0054 (8)0.0031 (8)0.0011 (8)
C70.0198 (10)0.0203 (11)0.0342 (12)0.0040 (8)0.0026 (8)0.0038 (8)
C80.0199 (10)0.0235 (11)0.0310 (11)0.0040 (8)0.0048 (8)0.0086 (8)
C90.0168 (9)0.0285 (11)0.0228 (10)0.0029 (8)0.0052 (8)0.0055 (8)
C100.0130 (9)0.0250 (11)0.0206 (10)0.0035 (8)0.0015 (7)0.0032 (8)
C110.0239 (10)0.0310 (12)0.0196 (10)0.0082 (9)0.0030 (8)0.0033 (8)
C120.0336 (12)0.0314 (12)0.0179 (10)0.0046 (9)0.0029 (8)0.0000 (8)
C130.0216 (10)0.0261 (11)0.0195 (10)0.0061 (8)0.0017 (8)0.0044 (8)
C140.0318 (11)0.0277 (11)0.0182 (10)0.0078 (9)0.0034 (8)0.0055 (8)
F1A0.0294 (7)0.0335 (7)0.0415 (8)0.0003 (6)0.0045 (6)0.0092 (6)
F2A0.0566 (9)0.0413 (8)0.0189 (6)0.0200 (7)0.0048 (6)0.0043 (5)
F3A0.0363 (7)0.0295 (7)0.0293 (7)0.0159 (5)0.0057 (5)0.0010 (5)
F4A0.0389 (7)0.0231 (7)0.0484 (8)0.0008 (6)0.0043 (6)0.0048 (6)
F5A0.0330 (7)0.0371 (8)0.0383 (7)0.0175 (6)0.0070 (5)0.0142 (6)
F6A0.0581 (9)0.0388 (8)0.0341 (7)0.0221 (7)0.0097 (6)0.0217 (6)
O1A0.0429 (9)0.0332 (9)0.0212 (7)0.0150 (7)0.0010 (6)0.0065 (6)
O2A0.0481 (10)0.0293 (8)0.0194 (8)0.0081 (7)0.0021 (7)0.0043 (6)
C1A0.0158 (9)0.0224 (10)0.0180 (9)0.0038 (8)0.0034 (7)0.0027 (7)
C2A0.0156 (9)0.0191 (10)0.0229 (10)0.0030 (7)0.0038 (7)0.0001 (8)
C3A0.0167 (9)0.0219 (10)0.0184 (9)0.0039 (8)0.0022 (7)0.0043 (8)
C4A0.0130 (9)0.0209 (10)0.0181 (9)0.0014 (7)0.0034 (7)0.0011 (7)
C5A0.0177 (9)0.0245 (11)0.0185 (9)0.0017 (8)0.0023 (7)0.0042 (8)
C6A0.0190 (10)0.0247 (11)0.0204 (10)0.0042 (8)0.0016 (8)0.0012 (8)
C7A0.0176 (10)0.0207 (10)0.0270 (11)0.0034 (8)0.0047 (8)0.0009 (8)
C8A0.0179 (10)0.0201 (10)0.0267 (11)0.0024 (8)0.0043 (8)0.0060 (8)
C9A0.0150 (9)0.0266 (11)0.0195 (10)0.0018 (8)0.0036 (7)0.0043 (8)
C10A0.0118 (9)0.0220 (10)0.0186 (9)0.0025 (7)0.0021 (7)0.0026 (7)
C11A0.0186 (10)0.0297 (11)0.0193 (10)0.0082 (8)0.0026 (7)0.0024 (8)
C12A0.0286 (11)0.0308 (12)0.0179 (10)0.0098 (9)0.0031 (8)0.0004 (8)
C13A0.0203 (10)0.0262 (11)0.0217 (10)0.0051 (8)0.0022 (8)0.0054 (8)
C14A0.0298 (11)0.0284 (12)0.0256 (11)0.0079 (9)0.0021 (9)0.0119 (9)
Geometric parameters (Å, º) top
F1—C121.337 (2)F1A—C12A1.336 (2)
F2—C121.333 (2)F2A—C12A1.330 (2)
F3—C121.337 (2)F3A—C12A1.338 (2)
F4—C141.343 (2)F4A—C14A1.342 (3)
F5—C141.341 (2)F5A—C14A1.341 (2)
F6—C141.324 (2)F6A—C14A1.322 (2)
O1—C111.214 (2)O1A—C11A1.214 (2)
O2—C131.216 (2)O2A—C13A1.215 (2)
C1—C21.398 (3)C1A—C2A1.387 (3)
C1—C101.428 (3)C1A—C10A1.434 (3)
C1—C111.457 (3)C1A—C11A1.457 (3)
C2—C31.403 (3)C2A—C3A1.408 (3)
C2—H20.9500C2A—H2A0.9500
C3—C41.429 (3)C3A—C4A1.431 (3)
C3—C131.447 (3)C3A—C13A1.446 (3)
C4—C51.391 (3)C4A—C5A1.394 (3)
C4—C101.467 (3)C4A—C10A1.463 (2)
C5—C61.387 (3)C5A—C6A1.383 (3)
C5—H50.9500C5A—H5A0.9500
C6—C71.390 (3)C6A—C7A1.392 (3)
C6—H60.9500C6A—H6A0.9500
C7—C81.386 (3)C7A—C8A1.390 (3)
C7—H70.9500C7A—H7A0.9500
C8—C91.386 (3)C8A—C9A1.390 (3)
C8—H80.9500C8A—H8A0.9500
C9—C101.389 (3)C9A—C10A1.389 (3)
C9—H90.9500C9A—H9A0.9500
C11—C121.536 (3)C11A—C12A1.541 (3)
C13—C141.544 (3)C13A—C14A1.546 (3)
C2—C1—C10108.52 (16)C2A—C1A—C10A108.39 (16)
C2—C1—C11125.49 (18)C2A—C1A—C11A125.81 (17)
C10—C1—C11125.99 (17)C10A—C1A—C11A125.78 (17)
C1—C2—C3109.69 (17)C1A—C2A—C3A110.12 (17)
C1—C2—H2125.2C1A—C2A—H2A124.9
C3—C2—H2125.2C3A—C2A—H2A124.9
C2—C3—C4108.25 (16)C2A—C3A—C4A107.87 (16)
C2—C3—C13125.54 (18)C2A—C3A—C13A125.59 (18)
C4—C3—C13126.20 (17)C4A—C3A—C13A126.53 (17)
C5—C4—C3125.52 (17)C5A—C4A—C3A125.60 (17)
C5—C4—C10127.61 (17)C5A—C4A—C10A127.54 (17)
C3—C4—C10106.84 (16)C3A—C4A—C10A106.85 (15)
C6—C5—C4128.73 (18)C6A—C5A—C4A128.50 (18)
C6—C5—H5115.6C6A—C5A—H5A115.7
C4—C5—H5115.6C4A—C5A—H5A115.7
C5—C6—C7128.88 (19)C5A—C6A—C7A129.35 (18)
C5—C6—H6115.6C5A—C6A—H6A115.3
C7—C6—H6115.6C7A—C6A—H6A115.3
C8—C7—C6129.13 (19)C8A—C7A—C6A129.10 (19)
C8—C7—H7115.4C8A—C7A—H7A115.5
C6—C7—H7115.4C6A—C7A—H7A115.5
C7—C8—C9129.54 (19)C7A—C8A—C9A128.92 (18)
C7—C8—H8115.2C7A—C8A—H8A115.5
C9—C8—H8115.2C9A—C8A—H8A115.5
C10—C9—C8128.27 (18)C10A—C9A—C8A128.53 (18)
C10—C9—H9115.9C10A—C9A—H9A115.7
C8—C9—H9115.9C8A—C9A—H9A115.7
C9—C10—C1125.46 (17)C9A—C10A—C1A125.14 (17)
C9—C10—C4127.81 (18)C9A—C10A—C4A128.04 (17)
C1—C10—C4106.65 (16)C1A—C10A—C4A106.74 (15)
O1—C11—C1125.8 (2)O1A—C11A—C1A126.36 (19)
O1—C11—C12117.38 (18)O1A—C11A—C12A117.31 (17)
C1—C11—C12116.78 (17)C1A—C11A—C12A116.31 (17)
F2—C12—F1107.72 (17)F2A—C12A—F1A107.42 (16)
F2—C12—F3107.00 (17)F2A—C12A—F3A107.06 (16)
F1—C12—F3107.28 (17)F1A—C12A—F3A107.55 (16)
F2—C12—C11111.20 (17)F2A—C12A—C11A111.26 (16)
F1—C12—C11110.51 (17)F1A—C12A—C11A110.94 (16)
F3—C12—C11112.90 (17)F3A—C12A—C11A112.37 (16)
O2—C13—C3125.94 (19)O2A—C13A—C3A126.57 (19)
O2—C13—C14116.69 (17)O2A—C13A—C14A116.71 (17)
C3—C13—C14117.37 (17)C3A—C13A—C14A116.72 (17)
F6—C14—F5107.30 (16)F6A—C14A—F4A107.38 (17)
F6—C14—F4107.41 (16)F6A—C14A—F5A107.43 (16)
F5—C14—F4106.68 (16)F4A—C14A—F5A106.64 (17)
F6—C14—C13111.59 (16)F6A—C14A—C13A111.71 (17)
F5—C14—C13111.68 (16)F4A—C14A—C13A111.30 (16)
F4—C14—C13111.89 (16)F5A—C14A—C13A112.10 (16)
C10—C1—C2—C32.2 (2)C10A—C1A—C2A—C3A1.5 (2)
C11—C1—C2—C3178.56 (18)C11A—C1A—C2A—C3A179.96 (17)
C1—C2—C3—C41.6 (2)C1A—C2A—C3A—C4A1.8 (2)
C1—C2—C3—C13178.33 (18)C1A—C2A—C3A—C13A177.22 (17)
C2—C3—C4—C5177.72 (17)C2A—C3A—C4A—C5A177.00 (18)
C13—C3—C4—C52.3 (3)C13A—C3A—C4A—C5A4.0 (3)
C2—C3—C4—C100.4 (2)C2A—C3A—C4A—C10A1.4 (2)
C13—C3—C4—C10179.51 (18)C13A—C3A—C4A—C10A177.65 (18)
C3—C4—C5—C6177.32 (19)C3A—C4A—C5A—C6A177.74 (18)
C10—C4—C5—C60.4 (3)C10A—C4A—C5A—C6A0.3 (3)
C4—C5—C6—C71.3 (3)C4A—C5A—C6A—C7A0.3 (3)
C5—C6—C7—C80.6 (4)C5A—C6A—C7A—C8A1.2 (3)
C6—C7—C8—C91.1 (4)C6A—C7A—C8A—C9A1.5 (3)
C7—C8—C9—C100.9 (4)C7A—C8A—C9A—C10A0.4 (3)
C8—C9—C10—C1177.52 (19)C8A—C9A—C10A—C1A177.21 (18)
C8—C9—C10—C41.1 (3)C8A—C9A—C10A—C4A0.9 (3)
C2—C1—C10—C9175.17 (18)C2A—C1A—C10A—C9A176.37 (17)
C11—C1—C10—C94.1 (3)C11A—C1A—C10A—C9A2.2 (3)
C2—C1—C10—C41.8 (2)C2A—C1A—C10A—C4A0.6 (2)
C11—C1—C10—C4178.89 (18)C11A—C1A—C10A—C4A179.14 (17)
C5—C4—C10—C92.0 (3)C5A—C4A—C10A—C9A1.0 (3)
C3—C4—C10—C9176.06 (18)C3A—C4A—C10A—C9A177.34 (18)
C5—C4—C10—C1178.95 (18)C5A—C4A—C10A—C1A177.85 (18)
C3—C4—C10—C10.9 (2)C3A—C4A—C10A—C1A0.47 (19)
C2—C1—C11—O1171.8 (2)C2A—C1A—C11A—O1A168.50 (19)
C10—C1—C11—O19.0 (3)C10A—C1A—C11A—O1A13.2 (3)
C2—C1—C11—C129.7 (3)C2A—C1A—C11A—C12A13.2 (3)
C10—C1—C11—C12169.47 (18)C10A—C1A—C11A—C12A165.03 (17)
O1—C11—C12—F23.9 (3)O1A—C11A—C12A—F2A1.3 (3)
C1—C11—C12—F2177.52 (17)C1A—C11A—C12A—F2A177.14 (16)
O1—C11—C12—F1115.7 (2)O1A—C11A—C12A—F1A120.81 (19)
C1—C11—C12—F162.9 (2)C1A—C11A—C12A—F1A57.6 (2)
O1—C11—C12—F3124.1 (2)O1A—C11A—C12A—F3A118.75 (19)
C1—C11—C12—F357.2 (2)C1A—C11A—C12A—F3A62.8 (2)
C2—C3—C13—O2168.8 (2)C2A—C3A—C13A—O2A175.72 (19)
C4—C3—C13—O211.1 (3)C4A—C3A—C13A—O2A3.1 (3)
C2—C3—C13—C1410.9 (3)C2A—C3A—C13A—C14A4.6 (3)
C4—C3—C13—C14169.21 (17)C4A—C3A—C13A—C14A176.51 (17)
O2—C13—C14—F66.2 (3)O2A—C13A—C14A—F6A0.0 (3)
C3—C13—C14—F6174.04 (16)C3A—C13A—C14A—F6A179.65 (17)
O2—C13—C14—F5113.9 (2)O2A—C13A—C14A—F4A120.0 (2)
C3—C13—C14—F565.9 (2)C3A—C13A—C14A—F4A59.6 (2)
O2—C13—C14—F4126.63 (19)O2A—C13A—C14A—F5A120.6 (2)
C3—C13—C14—F453.7 (2)C3A—C13A—C14A—F5A59.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F30.952.402.916 (2)114
C2A—H2A···F3A0.952.452.972 (2)115
C2A—H2A···F5A0.952.502.968 (2)111
C5—H5···O20.952.312.988 (2)127
C5A—H5A···O2A0.952.333.001 (2)127
C6—H6···O2Ai0.952.523.236 (2)133
C6A—H6A···O2i0.952.473.160 (2)130
C8—H8···F2Aii0.952.453.358 (2)160
C9—H9···O10.952.312.983 (2)127
C9—H9···O1Aii0.952.583.454 (2)153
C9A—H9A···O1ii0.952.503.352 (2)149
C9A—H9A···O1A0.952.312.993 (2)128
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H6F6O2
Mr320.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1634 (2), 10.8681 (4), 16.3286 (5)
α, β, γ (°)81.544 (2), 83.310 (2), 80.009 (2)
V3)1232.92 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.933, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20089, 5321, 3680
Rint0.031
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.02
No. of reflections5321
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F30.952.402.916 (2)114
C2A—H2A···F3A0.952.452.972 (2)115
C2A—H2A···F5A0.952.502.968 (2)111
C5—H5···O20.952.312.988 (2)127
C5A—H5A···O2A0.952.333.001 (2)127
C6—H6···O2Ai0.952.523.236 (2)133
C6A—H6A···O2i0.952.473.160 (2)130
C8—H8···F2Aii0.952.453.358 (2)160
C9—H9···O10.952.312.983 (2)127
C9—H9···O1Aii0.952.583.454 (2)153
C9A—H9A···O1ii0.952.503.352 (2)149
C9A—H9A···O1A0.952.312.993 (2)128
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was performed within the Cluster of Excellence `Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)', which is supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMathias, L. J. & Overberger, C. G. (1980). J. Org. Chem. 45, 1701–1703.  CrossRef CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin, Heidelberg: Springer.  Google Scholar
First citationRobertson, J. M., Shearer, H. M. M., Sim, G. A. & Watson, D. G. (1962). Acta Cryst. 15, 1–8.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZielinski, T., Kedziorek, M. & Jurczak, J. (2008). Chem. Eur. J. 14, 838–846.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds