organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Iodo­phen­yl)-1,2,3,4-tetra­hydro­iso­quinoline-1-carbo­nitrile

aCollege of Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China, and bCollege of Life Science, Northwest Agriculture and Forest University, Yangling 712100, People's Republic of China
*Correspondence e-mail: zhoulechem@yahoo.com.cn

(Received 8 April 2011; accepted 22 April 2011; online 20 May 2011)

In the title compound, C16H13IN2, the two benzene rings make a dihedral angle of 67.26 (5)°. The six-membered heterocycle of the tetra­hydro­isoquinoline unit adopts a half-chair conformation. In the crystal, adjacent mol­ecules are linked by pairs of weak inter­molecular C—H⋯N hydrogen bonds, forming inversion dimers. An intra­molecular C—H⋯I close contact is also observed.

Related literature

For the synthesis of the title compound, see: Ishii et al. (1985[Ishii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139-4151.]). For the biological activity of tetra­hydro­isoquinoline derivatives, see: Abe et al. (2005[Abe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355-1362.]); Kamal et al. (2011[Kamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567-578.]); Lane et al. (2006[Lane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180-3183.]); Liu et al. (2009[Liu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207-1213.]); Storch et al. (2002[Storch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909-920.]); Wright et al. (1990[Wright, A. E., Forleo, D. A., Gunawardana, G. P., Gunasekera, S. P., Koehn, F. E. & McConnell, O. J. (1990). J. Org. Chem. 55, 4508-4512.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IN2

  • Mr = 360.18

  • Monoclinic, P 21 /n

  • a = 11.7607 (12) Å

  • b = 8.4473 (9) Å

  • c = 15.2601 (15) Å

  • β = 107.662 (1)°

  • V = 1444.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 296 K

  • 0.42 × 0.32 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.458, Tmax = 0.598

  • 10311 measured reflections

  • 2689 independent reflections

  • 2359 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.02

  • 2689 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N2i 0.98 2.60 3.418 (5) 141
C7—H7⋯I1 0.98 3.03 3.633 (4) 121
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrahydroisoquinoline derivatives have recently attracted great attention due to their neurotoxicity (Abe et al., 2005; Storch et al., 2002), antitumor activities (Lane et al., 2006; Wright et al., 1990), antimicrobial activity (Kamal et al., 2011; Liu et al., 2009), and so on. With the interests in the synthesis of tetrahydroisoquinoline derivatives with biological activity, we report here the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the molecule of the title compound is built up from one 1-cyan-tetrahydroisoquinoline fragment connected to one 2-iodobenzene ring through the C—N bonds. Benzene C1–C6 and C11–C16 rings are inclined with respect to one another with a dihedral angle of 67.26 (5)°. The conformation of the six-membered ring of tetrahydroisoquinoline fragment is analyzed with respect to the plane formed by C1/C6/C7/C9 and the corresponding deviations of the atoms C8 and N1 are 0.459 (5) and 0.332 (3) Å, respectively. The C—N bonds within the tetrahydroisoquinoline fragment belong to single bond, the inter-ring C—N bond show some π-bond character, while the C—N bond of the cyano is of triple bond character. The important torsion angle which decides the geometry of the title compound is -80.4 (4)° for C12—C11—N1—C7.

In the crystal structure, two adjacent molecules are linked by a weak intermolecular C—H···N hydrogen bond into a dimer. These dimers are further connected by C—I···π interaction into a one-dimension chain along the b axis (Fig. 2). I1 aims at the π-cloud of the neighboring benzene ring C1–C6 (Cg), The I···Cg distance is 3.821 (2) Å with C···Cg of 5.622 (5) Å and C—I···Cg angle of 141.73°. An intramolecular C—H···I hydrogen bond is also observed (Table 1), which further consolidates the crystal packing.

Related literature top

For the synthesis of the title compound, see: Ishii et al. (1985). For the biological activity of tetrahydroisoquinoline derivatives, see: Abe et al. (2005); Kamal et al. (2011); Lane et al. (2006); Liu et al. (2009); Storch et al. (2002); Wright et al. (1990).

Experimental top

The title compound was synthesized according to the literature procedure (Ishii et al., 1985), and the single crystals were obtained from a solution of ethyl acetate by slow evaporation at room temperature.

Refinement top

H atoms were treated as riding, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located 1.31 Å from atom C4.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimension chain structure of the title compound.
2-(2-Iodophenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile top
Crystal data top
C16H13IN2F(000) = 704
Mr = 360.18Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5815 reflections
a = 11.7607 (12) Åθ = 2.6–28.1°
b = 8.4473 (9) ŵ = 2.20 mm1
c = 15.2601 (15) ÅT = 296 K
β = 107.662 (1)°Block, colourless
V = 1444.6 (3) Å30.42 × 0.32 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2689 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.458, Tmax = 0.598k = 1010
10311 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0558P)2 + 2.5461P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C16H13IN2V = 1444.6 (3) Å3
Mr = 360.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7607 (12) ŵ = 2.20 mm1
b = 8.4473 (9) ÅT = 296 K
c = 15.2601 (15) Å0.42 × 0.32 × 0.26 mm
β = 107.662 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2689 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2359 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.598Rint = 0.018
10311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 1.16 e Å3
2689 reflectionsΔρmin = 0.51 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1617 (4)1.1100 (5)0.0837 (3)0.0552 (10)
C20.0577 (4)1.1981 (7)0.0437 (5)0.0757 (15)
H20.00561.21770.07780.091*
C30.0307 (5)1.2559 (7)0.0439 (5)0.0821 (17)
H30.03801.31590.06820.098*
C40.1052 (5)1.2253 (7)0.0962 (4)0.0785 (15)
H40.08671.26360.15600.094*
C50.2082 (4)1.1369 (6)0.0589 (3)0.0612 (12)
H50.25941.11700.09360.073*
C60.2349 (4)1.0783 (5)0.0296 (3)0.0470 (9)
C70.3478 (4)0.9792 (5)0.0678 (3)0.0412 (8)
H70.35010.90040.02130.049*
C80.3220 (4)1.0020 (6)0.2187 (3)0.0535 (10)
H8A0.37211.09560.22820.064*
H8B0.33590.94880.27740.064*
C90.1920 (5)1.0483 (6)0.1804 (4)0.0655 (13)
H9A0.14260.95680.18150.079*
H9B0.17401.12910.21940.079*
C100.4559 (4)1.0835 (5)0.0839 (3)0.0457 (9)
C110.4559 (3)0.7998 (4)0.1851 (3)0.0417 (8)
C120.4616 (4)0.6511 (5)0.1462 (3)0.0440 (8)
C130.5645 (5)0.5622 (5)0.1734 (4)0.0588 (11)
H130.56770.46510.14540.071*
C140.6628 (4)0.6160 (6)0.2419 (3)0.0622 (12)
H140.73240.55590.25960.075*
C150.6579 (4)0.7576 (6)0.2839 (3)0.0615 (11)
H150.72300.79230.33170.074*
C160.5558 (4)0.8495 (5)0.2549 (3)0.0531 (10)
H160.55390.94690.28290.064*
I10.31094 (3)0.55223 (3)0.05008 (2)0.05981 (15)
N10.3511 (3)0.8951 (4)0.1520 (2)0.0425 (7)
N20.5385 (4)1.1593 (5)0.0987 (3)0.0632 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.047 (2)0.071 (3)0.0028 (19)0.024 (2)0.013 (2)
C20.048 (3)0.070 (3)0.109 (4)0.011 (2)0.025 (3)0.021 (3)
C30.061 (3)0.072 (4)0.099 (4)0.019 (3)0.004 (3)0.011 (3)
C40.075 (3)0.070 (3)0.077 (3)0.013 (3)0.003 (3)0.002 (3)
C50.060 (3)0.060 (3)0.061 (3)0.005 (2)0.014 (2)0.003 (2)
C60.043 (2)0.038 (2)0.059 (2)0.0019 (16)0.0148 (18)0.0094 (18)
C70.0452 (19)0.0354 (18)0.047 (2)0.0025 (16)0.0204 (16)0.0058 (16)
C80.069 (3)0.049 (2)0.051 (2)0.000 (2)0.031 (2)0.010 (2)
C90.065 (3)0.066 (3)0.082 (3)0.008 (2)0.046 (3)0.009 (2)
C100.046 (2)0.042 (2)0.054 (2)0.0030 (18)0.0218 (18)0.0005 (17)
C110.051 (2)0.0360 (19)0.0430 (19)0.0035 (16)0.0223 (17)0.0000 (15)
C120.053 (2)0.0389 (19)0.046 (2)0.0035 (17)0.0227 (17)0.0019 (16)
C130.073 (3)0.042 (2)0.067 (3)0.008 (2)0.030 (2)0.001 (2)
C140.058 (3)0.058 (3)0.069 (3)0.014 (2)0.017 (2)0.012 (2)
C150.057 (3)0.066 (3)0.056 (3)0.003 (2)0.010 (2)0.007 (2)
C160.062 (3)0.048 (2)0.050 (2)0.002 (2)0.0191 (19)0.0051 (19)
I10.0717 (2)0.0453 (2)0.0607 (2)0.01053 (13)0.01746 (16)0.01147 (12)
N10.0493 (18)0.0375 (16)0.0474 (17)0.0006 (14)0.0246 (15)0.0060 (14)
N20.058 (2)0.054 (2)0.082 (3)0.010 (2)0.028 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—C61.387 (6)C8—H8A0.9700
C1—C21.403 (7)C8—H8B0.9700
C1—C91.503 (7)C9—H9A0.9700
C2—C31.368 (9)C9—H9B0.9700
C2—H20.9300C10—N21.128 (5)
C3—C41.376 (9)C11—C161.390 (6)
C3—H30.9300C11—C121.400 (5)
C4—C51.390 (7)C11—N11.430 (5)
C4—H40.9300C12—C131.377 (6)
C5—C61.382 (6)C12—I12.100 (4)
C5—H50.9300C13—C141.380 (7)
C6—C71.528 (6)C13—H130.9300
C7—N11.458 (5)C14—C151.367 (7)
C7—C101.505 (6)C14—H140.9300
C7—H70.9800C15—C161.386 (7)
C8—N11.477 (5)C15—H150.9300
C8—C91.513 (7)C16—H160.9300
C6—C1—C2117.4 (5)H8A—C8—H8B108.4
C6—C1—C9120.8 (4)C1—C9—C8112.3 (4)
C2—C1—C9121.7 (4)C1—C9—H9A109.1
C3—C2—C1121.8 (5)C8—C9—H9A109.1
C3—C2—H2119.1C1—C9—H9B109.1
C1—C2—H2119.1C8—C9—H9B109.1
C2—C3—C4120.0 (5)H9A—C9—H9B107.9
C2—C3—H3120.0N2—C10—C7177.7 (5)
C4—C3—H3120.0C16—C11—C12117.3 (4)
C3—C4—C5119.5 (5)C16—C11—N1122.6 (3)
C3—C4—H4120.3C12—C11—N1120.2 (3)
C5—C4—H4120.3C13—C12—C11120.8 (4)
C6—C5—C4120.3 (5)C13—C12—I1118.1 (3)
C6—C5—H5119.9C11—C12—I1120.9 (3)
C4—C5—H5119.9C12—C13—C14120.5 (4)
C5—C6—C1121.0 (4)C12—C13—H13119.8
C5—C6—C7118.8 (4)C14—C13—H13119.8
C1—C6—C7120.2 (4)C15—C14—C13119.9 (4)
N1—C7—C10110.3 (3)C15—C14—H14120.1
N1—C7—C6113.0 (3)C13—C14—H14120.1
C10—C7—C6109.6 (3)C14—C15—C16119.8 (4)
N1—C7—H7107.9C14—C15—H15120.1
C10—C7—H7107.9C16—C15—H15120.1
C6—C7—H7107.9C15—C16—C11121.6 (4)
N1—C8—C9108.0 (4)C15—C16—H16119.2
N1—C8—H8A110.1C11—C16—H16119.2
C9—C8—H8A110.1C11—N1—C7112.0 (3)
N1—C8—H8B110.1C11—N1—C8117.1 (3)
C9—C8—H8B110.1C7—N1—C8111.1 (3)
C6—C1—C2—C32.3 (8)C16—C11—C12—I1173.5 (3)
C9—C1—C2—C3179.2 (5)N1—C11—C12—I17.4 (5)
C1—C2—C3—C41.4 (9)C11—C12—C13—C142.1 (7)
C2—C3—C4—C50.6 (9)I1—C12—C13—C14174.6 (4)
C3—C4—C5—C60.8 (8)C12—C13—C14—C150.7 (7)
C4—C5—C6—C11.8 (7)C13—C14—C15—C162.5 (7)
C4—C5—C6—C7179.0 (4)C14—C15—C16—C111.5 (7)
C2—C1—C6—C52.5 (7)C12—C11—C16—C151.3 (6)
C9—C1—C6—C5179.0 (4)N1—C11—C16—C15177.8 (4)
C2—C1—C6—C7178.3 (4)C16—C11—N1—C798.6 (4)
C9—C1—C6—C70.2 (6)C12—C11—N1—C780.4 (4)
C5—C6—C7—N1166.6 (4)C16—C11—N1—C831.4 (5)
C1—C6—C7—N114.2 (5)C12—C11—N1—C8149.5 (4)
C5—C6—C7—C1070.0 (5)C10—C7—N1—C1158.6 (4)
C1—C6—C7—C10109.2 (4)C6—C7—N1—C11178.4 (3)
C6—C1—C9—C819.0 (6)C10—C7—N1—C874.5 (4)
C2—C1—C9—C8162.6 (4)C6—C7—N1—C848.5 (4)
N1—C8—C9—C151.5 (5)C9—C8—N1—C11161.5 (4)
C16—C11—C12—C133.1 (6)C9—C8—N1—C768.1 (4)
N1—C11—C12—C13176.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i0.982.603.418 (5)141
C7—H7···I10.983.033.633 (4)121
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H13IN2
Mr360.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7607 (12), 8.4473 (9), 15.2601 (15)
β (°) 107.662 (1)
V3)1444.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.42 × 0.32 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.458, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
10311, 2689, 2359
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.02
No. of reflections2689
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N2i0.982.603.418 (5)141
C7—H7···I10.983.033.633 (4)121
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSF; Nos. 30771454, 31000865).

References

First citationAbe, K., Saitoh, T., Horiguchi, Y., Utsunomiya, I. & Taguchi, K. (2005). Biol. Pharm. Bull. 28, 1355–1362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshii, H., Ichikawa, Y. I. & Kawanabe, E. (1985). Chem. Pharm. Bull. 33, 4139–4151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKamal, A. M., Radwan, S. M. & Zaki, R. M. (2011). Eur. J. Med. Chem. 46, 567–578.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180–3183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhu, J., Zhou, A. N., Song, B. A., Zhu, H. L., Bai, L. S., Bhadury, P. S. & Pan, C. X. (2009). Bioorg. Med. Chem. 17, 1207–1213.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorch, A., Ott, S., Hwang, Y. I., Ortmann, R., Hein, A., Frenzel, S., Matsubara, K., Ohta, S., Wolf, H. U. & Schwarz, J. (2002). Biochem. Pharmacol. 63, 909–920.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWright, A. E., Forleo, D. A., Gunawardana, G. P., Gunasekera, S. P., Koehn, F. E. & McConnell, O. J. (1990). J. Org. Chem. 55, 4508–4512.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds