organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2,2′-Bi­piperidine-1,1′-diium dibromide

aTallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia
*Correspondence e-mail: fwerner@chemnet.ee

(Received 10 April 2011; accepted 27 April 2011; online 7 May 2011)

In the title compound, C10H22N22+·2Br, a precursor in the synthesis of organocatalysts, the bipiperidinium ion is located on a twofold rotation axis which passes through the mid-point of the central C—C bond. The piperidinium ring adopts a chair conformation. In the crystal, the cations are linked together by Br ions through N—H⋯Br hydrogen bonds, forming layers parallel to the ab plane.

Related literature

For the synthesis, see: Krumholz (1953[Krumholz, P. (1953). J. Am. Chem. Soc. 75, 2163-2166.]); Herrmann et al. (2006[Herrmann, W. A., Baskakov, D., Herdtweck, E., Hoffmann, S. D., Bunlaksananusorn, T., Rampf, F. & Rodefeld, L. (2006). Organometallics, 25, 2449-2456.]). For the application of N-substituted enanti­opure derivatives of the title compound in organocatalysis, see: Laars et al. (2008[Laars, M., Kriis, K., Kailas, T., Müürisepp, A.-M., Pehk, T., Kanger, T. & Lopp, M. (2008). Tetrahedron Asymmetry, 19, 641-645.]). For details of the CuII–catalysed Henry reaction, see: Noole et al. (2010[Noole, A., Lippur, K., Metsala, A., Lopp, M. & Kanger, T. (2010). J. Org. Chem. 75, 1313-1316.]). For related structures, see: Sato et al. (1982[Sato, M., Sato, Y., Yano, S., Yoshikawa, S., Toriumi, K., Itoh, H. & Itho, T. (1982). Inorg. Chem. 21, 2360-2364.]); Baran et al. (1992a[Baran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992a). Z. Kristallogr. 202, 137-139.],b[Baran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992b). Z. Kristallogr. 202, 142-144.]); Intini et al. (2008[Intini, F. P., Cini, R., Tamasi, G., Hursthouse, M. B. & Natile, G. (2008). Inorg. Chem. 47, 4909-4917.]).

[Scheme 1]

Experimental

Crystal data
  • C10H22N22+·2Br

  • Mr = 330.12

  • Monoclinic, C 2/c

  • a = 11.789 (2) Å

  • b = 10.6403 (18) Å

  • c = 11.6632 (17) Å

  • β = 107.687 (5)°

  • V = 1393.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.79 mm−1

  • T = 300 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.151, Tmax = 0.391

  • 4225 measured reflections

  • 1225 independent reflections

  • 1012 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.08

  • 1224 reflections

  • 70 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯Br1i 0.95 (4) 2.36 (4) 3.293 (3) 168 (3)
N1—H1NB⋯Br1ii 0.92 (4) 2.34 (4) 3.228 (3) 162 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y, z-{\script{1\over 2}}].

Data collection: GIS (Bruker, 2010[Bruker (2010). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N-substituted, enantiopure derivatives of the title phase, rac-2,2'-bipiperidine-1,1'-diium dibromide (I), catalyse stereoselectively both aldol reactions (Laars et al., 2008) and, in the form of their CuII–complexes, Henry (nitro-aldol) reactions (Noole et al., 2010).

Owing to the twofold axis, passing the centre of the bond C1—C1i (Fig. 1), Z'=0.5. Bond lengths and bond angles in the salt are normal. The piperidinium rings adopt chair conformation, with their least-squares planes (defined by their carbon and nitrogen atoms) twisted by about 77° against each other. Parallel to the (0 0 1) plane, the structure is made up of layers with a repeating distance of d001/2 of cations, which are hydrogen-bound via bromide ions (Fig. 2).

Related literature top

For the synthesis, see: Krumholz (1953); Herrmann et al. (2006). For the application of N-substituted enantiopure derivatives of the title compound in organocatalysis, see: Laars et al. (2008). For details of the CuII–catalysed Henry reaction, see: Noole et al. (2010). For related structures, see: Sato et al. (1982); Baran et al. (1992a,b); Intini et al. (2008).

Experimental top

Single crystals of (I) were prepared from 2,2'-bipiperidine (Krumholz, 1953) according to Herrmann et al. (2006).

Refinement top

Except for the protonic H atoms H1NA and H1NB, whose positions were refined freely, H atoms were included at calculated positions [d(C—H) = 0.97 (CH2) or 0.98 Å (CH)] and treated as riding on their base atoms. For all H atoms, Uiso(H) values were set at 1.2Ueq(C or N). The 6 8 10 reflection was excluded from the refinement due to its large Δ(F2)/esd value.

Computing details top

Data collection: GIS (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Cationic moiety in the crystal structure of the title compound together with the bromide ions bound to it through N—H···Br hydrogen bonds. Displacement ellipsoids for non–H atoms are drawn at the 50% probability level. Orange dashed lines indicate the hydrogen bonds. Symmetry codes: (i) -x, y, 1/2 - z; (ii) 1/2-x, 1/2 - y, 1 - z; (iii) x, -y, -1/2 + z; (iv) -1/2 + x, 1/2 - y, -1/2 + z; (v) -x, -y, 1 - z.
[Figure 2] Fig. 2. Packing diagram of the title compound. Orange dashed lines indicate N—H···Br hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.
rac-2,2'-Bipiperidine-1,1'-diium dibromide top
Crystal data top
C10H22N22+·2BrF(000) = 664
Mr = 330.12Dx = 1.573 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1621 reflections
a = 11.789 (2) Åθ = 2.6–24.9°
b = 10.6403 (18) ŵ = 5.79 mm1
c = 11.6632 (17) ÅT = 300 K
β = 107.687 (5)°Prism, colourless
V = 1393.9 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART X2S
diffractometer
1225 independent reflections
Radiation source: XOS X-beam microfocus source1012 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.068
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.151, Tmax = 0.391k = 1212
4225 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.P)2 + 0.0285P]
where P = (Fo2 + 2Fc2)/3
1224 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C10H22N22+·2BrV = 1393.9 (4) Å3
Mr = 330.12Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.789 (2) ŵ = 5.79 mm1
b = 10.6403 (18) ÅT = 300 K
c = 11.6632 (17) Å0.40 × 0.30 × 0.20 mm
β = 107.687 (5)°
Data collection top
Bruker SMART X2S
diffractometer
1225 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1012 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.391Rint = 0.068
4225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.47 e Å3
1224 reflectionsΔρmin = 0.94 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19514 (3)0.07309 (4)0.77393 (4)0.0429 (2)
N10.1066 (3)0.1990 (3)0.1590 (3)0.0319 (7)
H1NA0.156 (3)0.271 (4)0.183 (3)0.038*
H1NB0.146 (3)0.132 (4)0.202 (4)0.038*
C10.0106 (3)0.2219 (3)0.1814 (3)0.0287 (8)
H10.06300.15100.14730.034*
C20.0661 (3)0.3394 (4)0.1136 (3)0.0385 (9)
H2A0.14230.35530.12650.046*
H2B0.01480.41110.14380.046*
C30.0836 (4)0.3232 (5)0.0213 (4)0.0524 (11)
H3A0.13930.25530.05260.063*
H3B0.11690.39970.06350.063*
C40.0349 (4)0.2940 (4)0.0433 (3)0.0489 (11)
H4A0.02130.27820.12840.059*
H4B0.08720.36620.02080.059*
C50.0944 (4)0.1811 (4)0.0280 (4)0.0442 (10)
H5A0.04740.10640.00170.053*
H5B0.17250.16940.01820.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0502 (3)0.0283 (3)0.0495 (4)0.01100 (16)0.0142 (3)0.00332 (18)
N10.0415 (17)0.0201 (16)0.0361 (19)0.0024 (14)0.0146 (16)0.0033 (15)
C10.0344 (18)0.0208 (18)0.031 (2)0.0017 (15)0.0101 (16)0.0031 (17)
C20.042 (2)0.034 (2)0.037 (2)0.0072 (18)0.0088 (19)0.0033 (19)
C30.069 (3)0.053 (3)0.029 (2)0.006 (2)0.005 (2)0.004 (2)
C40.075 (3)0.044 (3)0.031 (2)0.004 (2)0.020 (2)0.000 (2)
C50.068 (3)0.033 (2)0.040 (2)0.006 (2)0.030 (2)0.012 (2)
Geometric parameters (Å, º) top
N1—C11.501 (4)C2—H2A0.9700
N1—C51.503 (5)C3—C41.528 (5)
N1—H1NB0.92 (4)C3—H3A0.9700
N1—H1NA0.95 (4)C3—H3B0.9700
C1—C21.517 (5)C4—C51.508 (6)
C1—C1i1.542 (6)C4—H4A0.9700
C1—H10.9800C4—H4B0.9700
C2—C31.533 (5)C5—H5A0.9700
C2—H2B0.9700C5—H5B0.9700
C1—N1—C5112.9 (3)C4—C3—C2110.5 (3)
C1—N1—H1NB112 (2)C4—C3—H3A109.5
C5—N1—H1NB110 (2)C2—C3—H3A109.5
C1—N1—H1NA109 (2)C4—C3—H3B109.5
C5—N1—H1NA106 (2)C2—C3—H3B109.5
H1NB—N1—H1NA107 (3)H3A—C3—H3B108.1
N1—C1—C2108.5 (3)C5—C4—C3111.4 (3)
N1—C1—C1i108.3 (3)C5—C4—H4A109.3
C2—C1—C1i116.7 (2)C3—C4—H4A109.3
N1—C1—H1107.7C5—C4—H4B109.3
C2—C1—H1107.7C3—C4—H4B109.3
C1i—C1—H1107.7H4A—C4—H4B108.0
C1—C2—C3110.2 (3)N1—C5—C4110.2 (3)
C1—C2—H2B109.6N1—C5—H5A109.6
C3—C2—H2B109.6C4—C5—H5A109.6
C1—C2—H2A109.6N1—C5—H5B109.6
C3—C2—H2A109.6C4—C5—H5B109.6
H2B—C2—H2A108.1H5A—C5—H5B108.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Br1ii0.95 (4)2.36 (4)3.293 (3)168 (3)
N1—H1NB···Br1iii0.92 (4)2.34 (4)3.228 (3)162 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H22N22+·2Br
Mr330.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)300
a, b, c (Å)11.789 (2), 10.6403 (18), 11.6632 (17)
β (°) 107.687 (5)
V3)1393.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.151, 0.391
No. of measured, independent and
observed [I > 2σ(I)] reflections
4225, 1225, 1012
Rint0.068
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.08
No. of reflections1224
No. of parameters70
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.94

Computer programs: GIS (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Br1i0.95 (4)2.36 (4)3.293 (3)168 (3)
N1—H1NB···Br1ii0.92 (4)2.34 (4)3.228 (3)162 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1/2.
 

Acknowledgements

The authors thank for funding grant agreement No. 229830 IC–UP2 under the 7th Framework Programme of the European Commission, the EU European Regional Development Fund (3.2.0101.08–0017), the Estonian Science Foundation (grant No. 8289) and the Ministry of Education and Research (grant No. 0142725 s06).

References

First citationBaran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992a). Z. Kristallogr. 202, 137–139.  CrossRef CAS Google Scholar
First citationBaran, P., Valigura, D., Svoboda, I. & Fuess, H. (1992b). Z. Kristallogr. 202, 142–144.  CrossRef CAS Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). GIS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerrmann, W. A., Baskakov, D., Herdtweck, E., Hoffmann, S. D., Bunlaksananusorn, T., Rampf, F. & Rodefeld, L. (2006). Organometallics, 25, 2449–2456.  CrossRef CAS Google Scholar
First citationIntini, F. P., Cini, R., Tamasi, G., Hursthouse, M. B. & Natile, G. (2008). Inorg. Chem. 47, 4909–4917.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrumholz, P. (1953). J. Am. Chem. Soc. 75, 2163–2166.  CrossRef CAS Google Scholar
First citationLaars, M., Kriis, K., Kailas, T., Müürisepp, A.-M., Pehk, T., Kanger, T. & Lopp, M. (2008). Tetrahedron Asymmetry, 19, 641–645.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoole, A., Lippur, K., Metsala, A., Lopp, M. & Kanger, T. (2010). J. Org. Chem. 75, 1313–1316.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSato, M., Sato, Y., Yano, S., Yoshikawa, S., Toriumi, K., Itoh, H. & Itho, T. (1982). Inorg. Chem. 21, 2360–2364.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds