organic compounds
8-Formyl-4-methyl-2-oxo-2H-chromen-7-yl 4-methylbenzenesulfonate
aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749, Republic of Korea, bDepartment of Physics, Dr. M.G.R. Educational and Research Institute University, Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095, India, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, and dDepartment of Chemistry, B.K. College, Belgaum 590 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in
In the title compound, C18H14O6S, the coumarin ring system is nearly planar, with a maximum out-of-plane deviation of 0.032 (2) Å. The dihedral angle between the benzene ring and the coumarin ring system is 32.41 (8)°. The crystal packing is stabilized by intermolecular C—H⋯O interactions, generating C(8), C(10) and C(11) chains and an R22(10) ring. The formyl group is disordered over two sets of sites, with occupancies of 0.548 (5) and 0.452 (5).
Related literature
For the biological activity of et al. (1996); El-Agrody et al. (2001); Emmanuel-Giota et al. (2001); Kulkarni et al. (2006); Kalkhambkar et al. (2008); Shaker (1996); Yang et al. (2005); Zhou et al. (2000). For a related structure, see: Yuvaraj et al. (2011).
see: CarltonExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536811018927/is2704sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018927/is2704Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811018927/is2704Isup3.cml
A mixture of 8-formyl-7-hydroxy-4-methyl coumarin (6 mmol), p-toluenesulfonylchloride (6 mmol) and powdered anhydrous K2CO3 (6 mmol) in 20 ml of super dry acetone was stirred in room temperature for 12 h. After the completion of the reaction, the solvent was removed under reduced pressure and separated the solids by filtration. It was then washed with 50 ml of dilute hydrochloric acid, excess of cold water, dried and crystallized from ethanol and dioxan mixture. Yield 80%; Light green crystalline solid (ethanol + dioxan); m.p. 180–182 °C; Rf 0.43 (benzene); IR (KBr) cm-1 1734, 1708, 1303; 1H NMR (CDCl3) δ 2.47 (3H, s), 2.51 (3H, s), 6.35 (1H, s), 7.32 (6H, m), 10.34 (1H, s); Anal. Calcd. for C18H14O6S: C 60.33, H 3.94; Found: C 60.13, H 3.70.
All H-atoms were refined using a riding model, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the aromatic CH, and with d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the CH3 group. The formyl group is disordered over two sites with occupancies of 0.548 (5) and 0.452 (5). Atoms O4A and O4B were restrained to be approximately isotropic by an ISOR 0.01 command. The distances of C14—O4A and C14—O4B have been restrained to 1.20 (1) Å.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).C18H14O6S | F(000) = 1488 |
Mr = 358.35 | Dx = 1.456 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 6552 reflections |
a = 17.6174 (7) Å | θ = 2.3–26.6° |
b = 7.2025 (3) Å | µ = 0.23 mm−1 |
c = 25.7706 (10) Å | T = 293 K |
V = 3270.0 (2) Å3 | Plate, colorless |
Z = 8 | 0.14 × 0.13 × 0.13 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3095 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
Graphite monochromator | θmax = 28.7°, θmin = 1.6° |
ϕ and ω scans | h = −23→23 |
48911 measured reflections | k = −9→9 |
4234 independent reflections | l = −34→34 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0672P)2 + 0.8242P] where P = (Fo2 + 2Fc2)/3 |
4234 reflections | (Δ/σ)max = 0.001 |
238 parameters | Δρmax = 0.26 e Å−3 |
14 restraints | Δρmin = −0.37 e Å−3 |
C18H14O6S | V = 3270.0 (2) Å3 |
Mr = 358.35 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 17.6174 (7) Å | µ = 0.23 mm−1 |
b = 7.2025 (3) Å | T = 293 K |
c = 25.7706 (10) Å | 0.14 × 0.13 × 0.13 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3095 reflections with I > 2σ(I) |
48911 measured reflections | Rint = 0.037 |
4234 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 14 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.26 e Å−3 |
4234 reflections | Δρmin = −0.37 e Å−3 |
238 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.70245 (18) | 0.5004 (5) | 0.48070 (11) | 0.1076 (9) | |
H1A | 0.7160 | 0.4100 | 0.4550 | 0.161* | |
H1B | 0.7446 | 0.5202 | 0.5037 | 0.161* | |
H1C | 0.6895 | 0.6152 | 0.4639 | 0.161* | |
C2 | 0.63513 (13) | 0.4313 (3) | 0.51137 (8) | 0.0712 (5) | |
C3 | 0.62555 (11) | 0.4882 (3) | 0.56260 (8) | 0.0652 (5) | |
H3 | 0.6605 | 0.5692 | 0.5773 | 0.078* | |
C4 | 0.56508 (10) | 0.4264 (3) | 0.59184 (7) | 0.0585 (4) | |
H4 | 0.5587 | 0.4663 | 0.6259 | 0.070* | |
C5 | 0.51398 (10) | 0.3038 (2) | 0.56962 (7) | 0.0563 (4) | |
C6 | 0.52174 (14) | 0.2479 (3) | 0.51834 (8) | 0.0708 (5) | |
H6 | 0.4866 | 0.1677 | 0.5034 | 0.085* | |
C7 | 0.58218 (16) | 0.3130 (3) | 0.49004 (8) | 0.0791 (6) | |
H7 | 0.5875 | 0.2763 | 0.4556 | 0.095* | |
C8 | 0.54138 (10) | 0.0811 (3) | 0.67455 (7) | 0.0578 (4) | |
C9 | 0.61696 (10) | 0.0624 (2) | 0.65996 (6) | 0.0525 (4) | |
C10 | 0.67090 (9) | 0.1065 (2) | 0.69784 (6) | 0.0472 (3) | |
C11 | 0.65136 (9) | 0.1600 (2) | 0.74813 (6) | 0.0495 (4) | |
C12 | 0.57417 (11) | 0.1691 (3) | 0.76024 (7) | 0.0631 (5) | |
H12 | 0.5595 | 0.2012 | 0.7937 | 0.076* | |
C13 | 0.51960 (10) | 0.1319 (3) | 0.72389 (8) | 0.0680 (5) | |
H13 | 0.4684 | 0.1408 | 0.7324 | 0.082* | |
C14 | 0.63965 (14) | −0.0075 (4) | 0.60842 (8) | 0.0772 (6) | |
H14A | 0.6916 | 0.0009 | 0.6025 | 0.093* | 0.548 (5) |
H14B | 0.5992 | −0.0394 | 0.5871 | 0.093* | 0.452 (5) |
C15 | 0.80427 (9) | 0.1381 (2) | 0.71607 (7) | 0.0534 (4) | |
C16 | 0.78344 (10) | 0.1945 (2) | 0.76774 (7) | 0.0550 (4) | |
H16 | 0.8220 | 0.2264 | 0.7907 | 0.066* | |
C17 | 0.71185 (10) | 0.2035 (2) | 0.78441 (6) | 0.0513 (4) | |
C18 | 0.69355 (13) | 0.2552 (3) | 0.83935 (7) | 0.0720 (5) | |
H18A | 0.7398 | 0.2772 | 0.8581 | 0.108* | |
H18B | 0.6660 | 0.1558 | 0.8555 | 0.108* | |
H18C | 0.6631 | 0.3658 | 0.8396 | 0.108* | |
O1 | 0.38782 (9) | 0.1146 (3) | 0.57769 (7) | 0.0957 (6) | |
O2 | 0.41980 (9) | 0.3388 (2) | 0.64607 (6) | 0.0814 (4) | |
O3 | 0.48511 (7) | 0.03917 (19) | 0.63759 (6) | 0.0685 (4) | |
O4A | 0.60724 (19) | −0.0694 (4) | 0.57442 (11) | 0.0912 (13) | 0.548 (5) |
O4B | 0.6962 (2) | −0.0293 (10) | 0.59052 (17) | 0.136 (2) | 0.452 (5) |
O5 | 0.74534 (6) | 0.09179 (18) | 0.68306 (4) | 0.0539 (3) | |
O6 | 0.86731 (7) | 0.1254 (2) | 0.69874 (6) | 0.0738 (4) | |
S1 | 0.44287 (3) | 0.20842 (8) | 0.60799 (2) | 0.06651 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.113 (2) | 0.114 (2) | 0.0953 (18) | 0.0111 (18) | 0.0263 (16) | 0.0339 (16) |
C2 | 0.0815 (14) | 0.0662 (12) | 0.0660 (11) | 0.0140 (10) | 0.0039 (10) | 0.0138 (10) |
C3 | 0.0622 (11) | 0.0601 (10) | 0.0735 (12) | 0.0003 (9) | −0.0090 (9) | 0.0002 (9) |
C4 | 0.0580 (10) | 0.0607 (10) | 0.0569 (9) | 0.0028 (8) | −0.0095 (8) | −0.0079 (8) |
C5 | 0.0581 (9) | 0.0538 (9) | 0.0570 (9) | 0.0043 (8) | −0.0142 (8) | −0.0006 (7) |
C6 | 0.0929 (15) | 0.0587 (10) | 0.0607 (10) | 0.0035 (10) | −0.0224 (10) | −0.0065 (9) |
C7 | 0.1139 (18) | 0.0721 (13) | 0.0513 (10) | 0.0132 (13) | −0.0026 (11) | −0.0005 (9) |
C8 | 0.0468 (8) | 0.0596 (10) | 0.0671 (10) | −0.0013 (7) | −0.0085 (7) | 0.0120 (8) |
C9 | 0.0506 (9) | 0.0523 (9) | 0.0546 (9) | 0.0037 (7) | −0.0045 (7) | 0.0034 (7) |
C10 | 0.0425 (8) | 0.0477 (8) | 0.0513 (8) | 0.0046 (6) | −0.0005 (6) | 0.0047 (6) |
C11 | 0.0489 (8) | 0.0501 (8) | 0.0496 (8) | 0.0055 (7) | 0.0010 (7) | 0.0078 (7) |
C12 | 0.0554 (10) | 0.0788 (12) | 0.0549 (9) | 0.0106 (9) | 0.0095 (8) | 0.0116 (9) |
C13 | 0.0442 (9) | 0.0882 (14) | 0.0715 (11) | 0.0044 (9) | 0.0055 (8) | 0.0176 (10) |
C14 | 0.0680 (13) | 0.0969 (16) | 0.0667 (12) | 0.0167 (12) | −0.0161 (11) | −0.0185 (11) |
C15 | 0.0473 (8) | 0.0543 (9) | 0.0588 (9) | 0.0035 (7) | −0.0040 (7) | 0.0000 (7) |
C16 | 0.0550 (9) | 0.0540 (9) | 0.0559 (9) | 0.0008 (7) | −0.0089 (7) | −0.0021 (7) |
C17 | 0.0589 (9) | 0.0468 (8) | 0.0483 (8) | 0.0035 (7) | −0.0022 (7) | 0.0030 (7) |
C18 | 0.0799 (13) | 0.0841 (13) | 0.0519 (9) | 0.0003 (11) | 0.0025 (9) | −0.0045 (9) |
O1 | 0.0631 (9) | 0.1010 (12) | 0.1230 (14) | −0.0170 (8) | −0.0409 (9) | 0.0130 (10) |
O2 | 0.0605 (8) | 0.0953 (11) | 0.0884 (10) | 0.0165 (8) | 0.0070 (7) | 0.0052 (9) |
O3 | 0.0530 (7) | 0.0674 (8) | 0.0850 (9) | −0.0080 (6) | −0.0181 (6) | 0.0112 (7) |
O4A | 0.111 (3) | 0.084 (2) | 0.0780 (19) | 0.0174 (17) | −0.0341 (17) | −0.0248 (15) |
O4B | 0.078 (3) | 0.241 (6) | 0.089 (3) | −0.013 (3) | 0.016 (2) | −0.065 (3) |
O5 | 0.0435 (6) | 0.0660 (7) | 0.0522 (6) | 0.0061 (5) | −0.0009 (5) | −0.0045 (5) |
O6 | 0.0454 (7) | 0.0988 (11) | 0.0773 (9) | 0.0045 (7) | 0.0020 (6) | −0.0126 (8) |
S1 | 0.0460 (2) | 0.0741 (3) | 0.0795 (3) | −0.0003 (2) | −0.0156 (2) | 0.0070 (2) |
C1—C2 | 1.510 (3) | C11—C12 | 1.397 (2) |
C1—H1A | 0.9600 | C11—C17 | 1.452 (2) |
C1—H1B | 0.9600 | C12—C13 | 1.369 (3) |
C1—H1C | 0.9600 | C12—H12 | 0.9300 |
C2—C7 | 1.378 (3) | C13—H13 | 0.9300 |
C2—C3 | 1.393 (3) | C14—O4B | 1.109 (4) |
C3—C4 | 1.379 (3) | C14—O4A | 1.137 (3) |
C3—H3 | 0.9300 | C14—H14A | 0.9300 |
C4—C5 | 1.385 (2) | C14—H14B | 0.9300 |
C4—H4 | 0.9300 | C15—O6 | 1.200 (2) |
C5—C6 | 1.388 (3) | C15—O5 | 1.383 (2) |
C5—S1 | 1.737 (2) | C15—C16 | 1.440 (2) |
C6—C7 | 1.373 (3) | C16—C17 | 1.334 (2) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—H7 | 0.9300 | C17—C18 | 1.499 (2) |
C8—C13 | 1.378 (3) | C18—H18A | 0.9600 |
C8—C9 | 1.390 (2) | C18—H18B | 0.9600 |
C8—O3 | 1.407 (2) | C18—H18C | 0.9600 |
C9—C10 | 1.399 (2) | O1—S1 | 1.4165 (16) |
C9—C14 | 1.476 (3) | O2—S1 | 1.4179 (17) |
C10—O5 | 1.3696 (19) | O3—S1 | 1.6191 (14) |
C10—C11 | 1.395 (2) | ||
C2—C1—H1A | 109.5 | C12—C11—C17 | 124.09 (16) |
C2—C1—H1B | 109.5 | C13—C12—C11 | 121.44 (17) |
H1A—C1—H1B | 109.5 | C13—C12—H12 | 119.3 |
C2—C1—H1C | 109.5 | C11—C12—H12 | 119.3 |
H1A—C1—H1C | 109.5 | C12—C13—C8 | 119.21 (17) |
H1B—C1—H1C | 109.5 | C12—C13—H13 | 120.4 |
C7—C2—C3 | 118.6 (2) | C8—C13—H13 | 120.4 |
C7—C2—C1 | 121.8 (2) | O4B—C14—C9 | 131.8 (3) |
C3—C2—C1 | 119.6 (2) | O4A—C14—C9 | 133.7 (3) |
C4—C3—C2 | 121.12 (19) | C9—C14—H14A | 113.1 |
C4—C3—H3 | 119.4 | C9—C14—H14B | 114.2 |
C2—C3—H3 | 119.4 | O6—C15—O5 | 116.59 (16) |
C3—C4—C5 | 118.82 (17) | O6—C15—C16 | 126.95 (16) |
C3—C4—H4 | 120.6 | O5—C15—C16 | 116.45 (15) |
C5—C4—H4 | 120.6 | C17—C16—C15 | 123.55 (16) |
C4—C5—C6 | 120.96 (19) | C17—C16—H16 | 118.2 |
C4—C5—S1 | 119.03 (14) | C15—C16—H16 | 118.2 |
C6—C5—S1 | 119.89 (16) | C16—C17—C11 | 118.42 (15) |
C7—C6—C5 | 118.9 (2) | C16—C17—C18 | 121.31 (17) |
C7—C6—H6 | 120.6 | C11—C17—C18 | 120.27 (16) |
C5—C6—H6 | 120.6 | C17—C18—H18A | 109.5 |
C6—C7—C2 | 121.63 (19) | C17—C18—H18B | 109.5 |
C6—C7—H7 | 119.2 | H18A—C18—H18B | 109.5 |
C2—C7—H7 | 119.2 | C17—C18—H18C | 109.5 |
C13—C8—C9 | 122.83 (17) | H18A—C18—H18C | 109.5 |
C13—C8—O3 | 119.04 (16) | H18B—C18—H18C | 109.5 |
C9—C8—O3 | 118.08 (17) | C8—O3—S1 | 118.74 (12) |
C8—C9—C10 | 116.10 (16) | C10—O5—C15 | 121.95 (13) |
C8—C9—C14 | 122.41 (17) | O1—S1—O2 | 120.07 (11) |
C10—C9—C14 | 121.43 (16) | O1—S1—O3 | 102.44 (9) |
O5—C10—C11 | 121.05 (14) | O2—S1—O3 | 107.72 (9) |
O5—C10—C9 | 116.03 (14) | O1—S1—C5 | 111.62 (10) |
C11—C10—C9 | 122.91 (15) | O2—S1—C5 | 109.80 (10) |
C10—C11—C12 | 117.44 (16) | O3—S1—C5 | 103.55 (8) |
C10—C11—C17 | 118.47 (15) | ||
C7—C2—C3—C4 | 0.8 (3) | C8—C9—C14—O4B | 179.2 (6) |
C1—C2—C3—C4 | −179.4 (2) | C10—C9—C14—O4B | −3.5 (7) |
C2—C3—C4—C5 | 0.9 (3) | C8—C9—C14—O4A | −7.1 (5) |
C3—C4—C5—C6 | −2.0 (3) | C10—C9—C14—O4A | 170.2 (3) |
C3—C4—C5—S1 | 173.98 (14) | O6—C15—C16—C17 | −179.34 (19) |
C4—C5—C6—C7 | 1.5 (3) | O5—C15—C16—C17 | 0.0 (3) |
S1—C5—C6—C7 | −174.49 (16) | C15—C16—C17—C11 | −2.1 (3) |
C5—C6—C7—C2 | 0.3 (3) | C15—C16—C17—C18 | 177.28 (18) |
C3—C2—C7—C6 | −1.4 (3) | C10—C11—C17—C16 | 1.5 (2) |
C1—C2—C7—C6 | 178.9 (2) | C12—C11—C17—C16 | −178.16 (18) |
C13—C8—C9—C10 | −2.8 (3) | C10—C11—C17—C18 | −177.90 (17) |
O3—C8—C9—C10 | 179.68 (15) | C12—C11—C17—C18 | 2.5 (3) |
C13—C8—C9—C14 | 174.6 (2) | C13—C8—O3—S1 | 80.5 (2) |
O3—C8—C9—C14 | −2.9 (3) | C9—C8—O3—S1 | −101.90 (18) |
C8—C9—C10—O5 | −178.68 (15) | C11—C10—O5—C15 | −3.4 (2) |
C14—C9—C10—O5 | 3.9 (3) | C9—C10—O5—C15 | 177.47 (15) |
C8—C9—C10—C11 | 2.2 (2) | O6—C15—O5—C10 | −177.79 (16) |
C14—C9—C10—C11 | −175.20 (18) | C16—C15—O5—C10 | 2.8 (2) |
O5—C10—C11—C12 | −179.13 (16) | C8—O3—S1—O1 | −175.87 (15) |
C9—C10—C11—C12 | −0.1 (3) | C8—O3—S1—O2 | −48.35 (16) |
O5—C10—C11—C17 | 1.2 (2) | C8—O3—S1—C5 | 67.94 (15) |
C9—C10—C11—C17 | −179.74 (15) | C4—C5—S1—O1 | 169.10 (15) |
C10—C11—C12—C13 | −1.7 (3) | C6—C5—S1—O1 | −14.87 (19) |
C17—C11—C12—C13 | 177.95 (18) | C4—C5—S1—O2 | 33.42 (17) |
C11—C12—C13—C8 | 1.2 (3) | C6—C5—S1—O2 | −150.56 (16) |
C9—C8—C13—C12 | 1.2 (3) | C4—C5—S1—O3 | −81.39 (16) |
O3—C8—C13—C12 | 178.67 (18) | C6—C5—S1—O3 | 94.64 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O6i | 0.93 | 2.56 | 3.326 (2) | 140 |
C13—H13···O6ii | 0.93 | 2.52 | 3.343 (2) | 148 |
C16—H16···O2iii | 0.93 | 2.51 | 3.433 (2) | 175 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C18H14O6S |
Mr | 358.35 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 17.6174 (7), 7.2025 (3), 25.7706 (10) |
V (Å3) | 3270.0 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.14 × 0.13 × 0.13 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 48911, 4234, 3095 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.135, 1.02 |
No. of reflections | 4234 |
No. of parameters | 238 |
No. of restraints | 14 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.37 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O6i | 0.93 | 2.56 | 3.326 (2) | 140 |
C13—H13···O6ii | 0.93 | 2.52 | 3.343 (2) | 148 |
C16—H16···O2iii | 0.93 | 2.51 | 3.433 (2) | 175 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, y, −z+3/2. |
Acknowledgements
HY acknowledges Yeungnam University for the opportunity to work as a Full-Time Foreign Instructor.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145–151. CrossRef CAS PubMed Web of Science Google Scholar
El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527. Web of Science CrossRef CAS Google Scholar
Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722. CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kalkhambkar, R.G., Kulkarni, G.M., Kamanavalli, Premkumar, N. Asdaq, S.M.B. & Sun, C.M. (2008). Eur. J. Med. Chem. 43, 2178–2188. Google Scholar
Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Shaker, R. M. (1996). Pharmazie, 51, 148–148. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852–60. Web of Science CrossRef PubMed CAS Google Scholar
Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Kulkarni, G. M. & Bapset, R. M. (2011). Acta Cryst. E67, o323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins are the class of lactones with extensive occurrence in plants possessing wide range of biological activities (Kulkarni et al., 2006). Many synthetic and naturally occurring coumarins are well documented for their wide range of biological activities such as antibacterial (El-Agrody et al., 2001), antifungal (Shaker, 1996), antioxidant (Yang et al., 2005), analgesic (Kalkhambkar et al., 2008) and anti-inflammatory (Emmanuel-Giota et al., 2001) properties. A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. In view of various biological properties associated with coumarins, we have synthesized the title compound and report here its structure.
The molecular structure of the title compound is shown in Fig.1. Bond lengths and bond angles are comparable with the similar structure (Yuvaraj et al., 2011). Positional disorder has been observed for formyl oxygen atom with C14—O4A and C14—O4B bond lengths being 1.137 (3) and 1.109 (4) Å, respectively. The coumarin ring system is nearly planar with a maximum out-of-plane deviation of 0.032 (2) Å (r.m.s. deviation = 0.021 Å). Dihedral angle between the C2–C7 benzene ring and the C8–C13 benzene ring of the coumarin moeity is 33.3 (1)°. Atoms O6 and C18 lie -0.017 (3) and 0.073 (3) Å, respectively, from the least-squares plane of the atoms (C10/C11/C17/C16/C15/O5, r.m.s. deviation = 0.012 Å). Atom C1 lies 0.030 (4) Å from the least-squares plane of the phenyl ring (r.m.s. deviation = 0.007 Å).
The crystal packing is stabilized by C—H···O intermolecular interactions. C4—H4···O6i interaction generates a helical C(11) chain along the [010] direction. Interactions C13—H13···O6ii and C16—H16···O2iii generate C(8) and C(10) chains, respectively, running along [100]. In addition, the interactions C13—H13···O6ii and C16—H16···O2iii generate an R22(10) ring.