metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m675-m676

(Acetyl­acetonato)di­bromido[2,2-di­phenyl­hydrazin-1-ido(1−)][2,2-di­phenyl­hydrazin-1-ido(2−)]molybdenum(VI)

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, and cLaboratorio de Cristalografía, Difracción de Rayos-X, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 20 April 2011; accepted 26 April 2011; online 7 May 2011)

In the title compound, [MoBr2(C12H11N2)(C12H10N2)(C5H7O2)], the MoVI atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from the diphenyl­hydrazide(1−) and diphenyl­hydrazide(2−) ligands, two O atoms from a bidentate acetyl­acetonate ligand and two Br ions. The mol­ecules form an inversion dimer via a pair of weak C—H⋯O hydrogen bonds and a ππ stacking inter­action with a centroid–centroid distance of 3.7401 (12) Å. Weak intra­molecular C—H⋯Br inter­actions and an intra­molecular ππ stacking inter­action with a centroid–centroid distance of 3.8118 (15) Å are also observed.

Related literature

For related structures, see: Bustos et al. (1994[Bustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427-1433.], 2006[Bustos, C., Sánchez, C., Schott, E., Garland, M. T. & Alvarez-Thon, L. (2006). Acta Cryst. E62, m3104-m3106.]). For the importance of these compounds as potential models of inter­mediates in the conversion of coordinated dinitro­gen into ammonia, see: Henderson et al. (1983[Henderson, R. A., Leigh, G. J. & Pickett, C. J. (1983). Adv. Inorg. Radiochem. 27, 197-292.]); McCleverty (1987[McCleverty, J. A. (1987). Transition Met. Chem. 12, 282-287.]).

[Scheme 1]

Experimental

Crystal data
  • [MoBr2(C12H11N2)(C12H10N2)(C5H7O2)]

  • Mr = 720.29

  • Monoclinic, P 21 /c

  • a = 9.5828 (11) Å

  • b = 32.187 (4) Å

  • c = 9.1455 (10) Å

  • β = 94.601 (2)°

  • V = 2811.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.34 mm−1

  • T = 150 K

  • 0.36 × 0.31 × 0.29 mm

Data collection
  • Bruker D8 Discover with SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.324, Tmax = 0.379

  • 22331 measured reflections

  • 5678 independent reflections

  • 5133 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.05

  • 5678 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—Br1 2.6023 (5)
Mo1—Br2 2.5646 (4)
Mo1—O1 2.1074 (16)
Mo1—O2 2.0530 (13)
Mo1—N1 1.9638 (16)
Mo1—N3 1.7559 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br2 0.95 2.92 3.712 (3) 142
C20—H20⋯Br2 0.95 2.85 3.788 (2) 168
C23—H23⋯O2i 0.95 2.49 3.392 (2) 158
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

In a previous paper, it was published a series of molybdenum complexes containing both end-on organohydrazide(1-) and organohydrazide(2-) ligands (Bustos et al., 1994), formulated as [Mo(NHNRPh)(NNRPh)(acac)X2] (R= Me, Ph; X = Cl, Br, I). These compounds are of remarkable importance as potential models of intermediates in the conversion of coordinated dinitrogen into ammonia (McCleverty, 1987; Henderson et al., 1983). Here, the crystalline and molecular structure of [Mo(NHNPh2)(NNPh2)(acac)Br2] is reported.

The molecular structure of the title compound, (I), is shown in Fig. 1. This compound which crystallizes in space group P21/c, is equivalent in topology to [Mo(NHNPh2)(NNPh2)(acac)Cl2] (Bustos et al., 1994), (code HEDCIC), where the bromine atoms are replaced by chlorine atoms.

The coordination geometry about the MoVI atom can be described as a distorted octahedron (Table 1). The bromine ligands occupy two trans-axial sites while the equatorial positions are occupied by two cis-hydrazide ligands and the oxygen atoms of the acetylacetonate ligand. The two hydrazide ligands are different due to the location of the hydrogen atom attached to the N1 atom. In effect the Mo1, N3 and N4 atoms are almost linear [171.87 (14)°] while the Mo1—N1—N2 angle is 140.98 (15)°. In (I), there are two weak intramolecular C—H···Br hydrogen bonds (Table 2) and one intramolecular ππ stacking interaction involving the C1—C6 and C13—C18 rings, with a distance of 3.8118 (15) Å between ring centroids (Fig. 2).

In the crystal structure, two weak hydrogen bonds C23—H23···O2i and C23i—H23i..O2 (Table 2) link the molecules into dimers. In addition these dimers are further stabilized by a ππ stacking interaction with distance Cg···Cgi of 3.7401 (12) Å, where Cg is the centroids of the C19–C24 ring (Fig. 2). [symmetry code: (i) 1 - x, -y, -z]. The entire three-dimensional network is constructed mainly by weak C—H···Br interactions (Bustos et al., 2006).

Related literature top

For related structures, see: Bustos et al. (1994, 2006). For the importance of these compounds as potential models of intermediates in the conversion of coordinated dinitrogen into ammonia, see: Henderson et al. (1983); McCleverty (1987).

Experimental top

This compound was synthesized as was described in the literature (Bustos et al., 1994), and single crystals suitable for X-ray diffraction were obtained by diffusion of diethylether on a concentrated solution of the compound in chloroform.

Refinement top

The H atom attached to the N1 atom was located in a difference Fourier map and refined freely. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The methyl groups were allowed to rotate.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, showing the formation of dimer connected via two weak contacts (dashed lines) and one ππ stacking interaction. It is also shown intramolecular ππ stacking interactions (dotted lines) [symmetry code: (i) 1 - x, -y, -z]. H atoms not involved in the interactions have been omitted for clarity.
(Acetylacetonato)dibromido[2,2-diphenylhydrazin-1-ido(1-)][2,2- diphenylhydrazin-1-ido(2-)]molybdenum(VI) top
Crystal data top
[MoBr2(C12H11N2)(C12H10N2)(C5H7O2)]F(000) = 1432
Mr = 720.29Dx = 1.702 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 9.5828 (11) Åθ = 2.1–26.3°
b = 32.187 (4) ŵ = 3.34 mm1
c = 9.1455 (10) ÅT = 150 K
β = 94.601 (2)°Block, red
V = 2811.8 (6) Å30.36 × 0.31 × 0.29 mm
Z = 4
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
5678 independent reflections
Radiation source: fine-focus sealed tube5133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.324, Tmax = 0.379k = 3940
22331 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.034P)2 + 1.394P]
where P = (Fo2 + 2Fc2)/3
5678 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[MoBr2(C12H11N2)(C12H10N2)(C5H7O2)]V = 2811.8 (6) Å3
Mr = 720.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5828 (11) ŵ = 3.34 mm1
b = 32.187 (4) ÅT = 150 K
c = 9.1455 (10) Å0.36 × 0.31 × 0.29 mm
β = 94.601 (2)°
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
5678 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5133 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 0.379Rint = 0.021
22331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.68 e Å3
5678 reflectionsΔρmin = 0.29 e Å3
349 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.81628 (2)0.10424 (1)0.25802 (2)0.0187 (1)
Br10.92515 (2)0.10449 (1)0.00633 (3)0.0275 (1)
Br20.75285 (3)0.09355 (1)0.52256 (2)0.0295 (1)
O11.02455 (16)0.10749 (5)0.35070 (18)0.0265 (5)
O20.85400 (15)0.04148 (4)0.25378 (16)0.0246 (4)
N10.8420 (2)0.16473 (5)0.26814 (19)0.0209 (5)
N20.77411 (19)0.20059 (5)0.2310 (2)0.0244 (5)
N30.64377 (18)0.10063 (5)0.17844 (19)0.0190 (5)
N40.51707 (18)0.09218 (5)0.11958 (19)0.0213 (5)
C10.6275 (2)0.20319 (6)0.2423 (2)0.0225 (6)
C20.5436 (2)0.22312 (7)0.1319 (3)0.0271 (7)
C30.4013 (3)0.22633 (7)0.1446 (3)0.0317 (7)
C40.3422 (3)0.20957 (8)0.2650 (3)0.0343 (8)
C50.4264 (3)0.19004 (8)0.3739 (3)0.0326 (8)
C60.5696 (3)0.18676 (7)0.3642 (3)0.0278 (7)
C70.8529 (2)0.23412 (7)0.1783 (3)0.0259 (7)
C80.8250 (3)0.27458 (7)0.2205 (3)0.0359 (8)
C90.9034 (3)0.30687 (8)0.1696 (4)0.0496 (10)
C101.0081 (3)0.29879 (9)0.0774 (4)0.0544 (10)
C111.0352 (3)0.25879 (10)0.0369 (3)0.0467 (10)
C120.9578 (2)0.22561 (8)0.0865 (3)0.0324 (8)
C130.4572 (2)0.11994 (6)0.0079 (2)0.0208 (6)
C140.3143 (2)0.12864 (7)0.0017 (2)0.0248 (6)
C150.2557 (2)0.15429 (7)0.1079 (3)0.0272 (7)
C160.3388 (2)0.17196 (7)0.2082 (3)0.0296 (7)
C170.4815 (2)0.16334 (8)0.2006 (3)0.0299 (7)
C180.5410 (2)0.13723 (7)0.0931 (2)0.0252 (7)
C190.4587 (2)0.05174 (6)0.1439 (2)0.0204 (6)
C200.5015 (2)0.03015 (7)0.2715 (2)0.0238 (6)
C210.4490 (2)0.00941 (7)0.2924 (2)0.0274 (7)
C220.3528 (2)0.02705 (7)0.1882 (2)0.0262 (7)
C230.3110 (2)0.00517 (7)0.0626 (2)0.0261 (7)
C240.3641 (2)0.03414 (7)0.0386 (2)0.0241 (6)
C251.2505 (3)0.09211 (8)0.4574 (3)0.0380 (8)
C261.1132 (2)0.07829 (7)0.3829 (2)0.0259 (7)
C271.0882 (2)0.03647 (7)0.3542 (3)0.0315 (7)
C280.9644 (2)0.01997 (7)0.2893 (2)0.0257 (7)
C290.9515 (3)0.02542 (7)0.2557 (3)0.0345 (8)
H10.928 (3)0.1690 (9)0.292 (3)0.039 (8)*
H20.583800.234300.048900.0320*
H30.343600.240100.070400.0380*
H40.244100.211500.272500.0410*
H50.385600.178700.456400.0390*
H60.627200.173500.439800.0330*
H80.753000.280000.283600.0430*
H90.885400.334600.197900.0590*
H101.061200.321100.042100.0650*
H111.107700.253600.025700.0560*
H120.976400.197900.058000.0390*
H140.257800.117100.072100.0300*
H150.158000.159800.114400.0330*
H160.298400.190000.282300.0360*
H170.538300.175500.269600.0360*
H180.638300.131200.088400.0300*
H200.565900.042300.343400.0290*
H210.478900.024600.378300.0330*
H220.316100.054000.203600.0310*
H230.245100.017100.008400.0310*
H240.336100.048900.048900.0290*
H25A1.298500.110100.391100.0570*
H25B1.308900.067800.482800.0570*
H25C1.233900.107500.546900.0570*
H271.161900.017600.381200.0380*
H29A0.858900.035300.278500.0520*
H29B1.024000.040700.315100.0520*
H29C0.963000.030000.151400.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0180 (1)0.0146 (1)0.0227 (1)0.0005 (1)0.0028 (1)0.0006 (1)
Br10.0241 (1)0.0284 (1)0.0307 (1)0.0020 (1)0.0060 (1)0.0039 (1)
Br20.0391 (1)0.0259 (1)0.0226 (1)0.0065 (1)0.0034 (1)0.0040 (1)
O10.0217 (8)0.0211 (8)0.0353 (9)0.0005 (6)0.0063 (7)0.0004 (6)
O20.0245 (8)0.0169 (7)0.0311 (8)0.0017 (6)0.0049 (6)0.0005 (6)
N10.0207 (10)0.0171 (9)0.0244 (9)0.0010 (7)0.0014 (8)0.0006 (7)
N20.0248 (9)0.0147 (9)0.0333 (10)0.0015 (7)0.0008 (8)0.0041 (8)
N30.0206 (9)0.0154 (8)0.0208 (9)0.0014 (7)0.0010 (7)0.0008 (7)
N40.0172 (9)0.0213 (9)0.0246 (9)0.0019 (7)0.0029 (7)0.0043 (7)
C10.0234 (11)0.0165 (10)0.0274 (11)0.0024 (8)0.0018 (9)0.0032 (8)
C20.0297 (12)0.0218 (11)0.0294 (12)0.0020 (9)0.0009 (10)0.0001 (9)
C30.0312 (13)0.0257 (12)0.0372 (13)0.0056 (10)0.0034 (10)0.0043 (10)
C40.0260 (12)0.0316 (13)0.0457 (15)0.0021 (10)0.0058 (11)0.0102 (11)
C50.0375 (14)0.0292 (13)0.0327 (13)0.0021 (10)0.0125 (11)0.0045 (10)
C60.0347 (13)0.0228 (11)0.0260 (11)0.0035 (9)0.0035 (10)0.0023 (9)
C70.0244 (11)0.0207 (11)0.0307 (12)0.0045 (8)0.0088 (9)0.0070 (9)
C80.0364 (14)0.0221 (12)0.0466 (15)0.0010 (10)0.0128 (11)0.0052 (11)
C90.0506 (18)0.0220 (13)0.070 (2)0.0098 (12)0.0329 (16)0.0139 (13)
C100.0444 (17)0.0439 (17)0.069 (2)0.0262 (14)0.0325 (16)0.0357 (15)
C110.0277 (13)0.062 (2)0.0485 (16)0.0142 (13)0.0088 (12)0.0283 (15)
C120.0289 (13)0.0319 (13)0.0351 (13)0.0045 (10)0.0045 (10)0.0088 (10)
C130.0206 (10)0.0181 (10)0.0229 (10)0.0017 (8)0.0034 (8)0.0012 (8)
C140.0219 (11)0.0251 (11)0.0275 (11)0.0014 (9)0.0023 (9)0.0023 (9)
C150.0211 (11)0.0280 (12)0.0316 (12)0.0022 (9)0.0039 (9)0.0009 (10)
C160.0324 (13)0.0286 (12)0.0265 (12)0.0010 (10)0.0062 (10)0.0067 (10)
C170.0289 (12)0.0340 (13)0.0266 (11)0.0079 (10)0.0013 (10)0.0069 (10)
C180.0204 (11)0.0282 (12)0.0266 (11)0.0024 (9)0.0014 (9)0.0014 (9)
C190.0177 (10)0.0183 (10)0.0255 (11)0.0009 (8)0.0031 (8)0.0001 (8)
C200.0236 (11)0.0249 (11)0.0225 (11)0.0035 (9)0.0003 (9)0.0009 (9)
C210.0320 (12)0.0248 (12)0.0255 (11)0.0033 (9)0.0024 (9)0.0054 (9)
C220.0307 (12)0.0194 (11)0.0291 (12)0.0052 (9)0.0070 (10)0.0011 (9)
C230.0257 (11)0.0257 (12)0.0264 (11)0.0064 (9)0.0005 (9)0.0048 (9)
C240.0251 (11)0.0252 (11)0.0216 (11)0.0016 (9)0.0006 (9)0.0015 (9)
C250.0255 (13)0.0363 (14)0.0501 (16)0.0037 (10)0.0107 (11)0.0099 (12)
C260.0206 (11)0.0294 (12)0.0273 (11)0.0038 (9)0.0001 (9)0.0007 (9)
C270.0263 (12)0.0274 (12)0.0392 (14)0.0106 (10)0.0075 (10)0.0061 (10)
C280.0311 (12)0.0209 (11)0.0246 (11)0.0038 (9)0.0005 (9)0.0001 (9)
C290.0399 (14)0.0213 (12)0.0405 (14)0.0071 (10)0.0082 (11)0.0053 (10)
Geometric parameters (Å, º) top
Mo1—Br12.6023 (5)C20—C211.388 (3)
Mo1—Br22.5646 (4)C21—C221.393 (3)
Mo1—O12.1074 (16)C22—C231.379 (3)
Mo1—O22.0530 (13)C23—C241.388 (3)
Mo1—N11.9638 (16)C25—C261.500 (3)
Mo1—N31.7559 (18)C26—C271.389 (3)
O1—C261.285 (3)C27—C281.389 (3)
O2—C281.284 (2)C28—C291.496 (3)
N1—N21.355 (2)C2—H20.9500
N2—C11.419 (3)C3—H30.9500
N2—C71.423 (3)C4—H40.9500
N3—N41.316 (2)C5—H50.9500
N4—C131.441 (3)C6—H60.9500
N4—C191.441 (3)C8—H80.9500
N1—H10.85 (3)C9—H90.9500
C1—C61.389 (3)C10—H100.9500
C1—C21.395 (3)C11—H110.9500
C2—C31.382 (3)C12—H120.9500
C3—C41.387 (4)C14—H140.9500
C4—C51.382 (4)C15—H150.9500
C5—C61.386 (4)C16—H160.9500
C7—C121.388 (3)C17—H170.9500
C7—C81.390 (3)C18—H180.9500
C8—C91.385 (4)C20—H200.9500
C9—C101.386 (5)C21—H210.9500
C10—C111.370 (4)C22—H220.9500
C11—C121.397 (4)C23—H230.9500
C13—C141.394 (3)C24—H240.9500
C13—C181.388 (3)C25—H25A0.9800
C14—C151.383 (3)C25—H25B0.9800
C15—C161.384 (3)C25—H25C0.9800
C16—C171.392 (3)C27—H270.9500
C17—C181.381 (3)C29—H29A0.9800
C19—C241.389 (3)C29—H29B0.9800
C19—C201.392 (3)C29—H29C0.9800
Br1—Mo1—Br2167.70 (1)O1—C26—C25115.3 (2)
Br1—Mo1—O185.51 (4)O1—C26—C27124.39 (18)
Br1—Mo1—O284.42 (4)C26—C27—C28125.5 (2)
Br1—Mo1—N188.90 (5)C27—C28—C29121.0 (2)
Br1—Mo1—N393.70 (6)O2—C28—C27124.1 (2)
Br2—Mo1—O185.17 (5)O2—C28—C29114.94 (19)
Br2—Mo1—O286.63 (4)C1—C2—H2120.00
Br2—Mo1—N197.29 (5)C3—C2—H2120.00
Br2—Mo1—N395.49 (6)C2—C3—H3120.00
O1—Mo1—O283.91 (6)C4—C3—H3120.00
O1—Mo1—N179.66 (7)C3—C4—H4120.00
O1—Mo1—N3178.77 (7)C5—C4—H4120.00
O2—Mo1—N1162.71 (7)C4—C5—H5120.00
O2—Mo1—N395.07 (7)C6—C5—H5120.00
N1—Mo1—N3101.28 (8)C1—C6—H6121.00
Mo1—O1—C26130.03 (14)C5—C6—H6121.00
Mo1—O2—C28131.95 (13)C7—C8—H8120.00
Mo1—N1—N2140.98 (15)C9—C8—H8120.00
Mo1—N3—N4171.87 (14)C8—C9—H9120.00
N1—N2—C1119.35 (16)C10—C9—H9120.00
N1—N2—C7118.28 (17)C9—C10—H10120.00
C1—N2—C7122.35 (16)C11—C10—H10120.00
N3—N4—C13117.61 (16)C10—C11—H11119.00
N3—N4—C19118.70 (16)C12—C11—H11120.00
C13—N4—C19122.14 (16)C7—C12—H12121.00
Mo1—N1—H1107 (2)C11—C12—H12121.00
N2—N1—H1111 (2)C13—C14—H14120.00
N2—C1—C2119.38 (17)C15—C14—H14120.00
C2—C1—C6120.8 (2)C14—C15—H15120.00
N2—C1—C6119.83 (19)C16—C15—H15120.00
C1—C2—C3119.3 (2)C15—C16—H16120.00
C2—C3—C4120.4 (3)C17—C16—H16120.00
C3—C4—C5119.8 (3)C16—C17—H17120.00
C4—C5—C6120.8 (3)C18—C17—H17120.00
C1—C6—C5118.9 (2)C13—C18—H18120.00
C8—C7—C12121.2 (2)C17—C18—H18120.00
N2—C7—C12119.0 (2)C19—C20—H20120.00
N2—C7—C8119.8 (2)C21—C20—H20120.00
C7—C8—C9119.2 (3)C20—C21—H21120.00
C8—C9—C10120.2 (3)C22—C21—H21120.00
C9—C10—C11120.2 (3)C21—C22—H22120.00
C10—C11—C12120.9 (3)C23—C22—H22120.00
C7—C12—C11118.4 (2)C22—C23—H23120.00
N4—C13—C14119.16 (17)C24—C23—H23120.00
C14—C13—C18120.74 (18)C19—C24—H24120.00
N4—C13—C18120.10 (17)C23—C24—H24120.00
C13—C14—C15119.33 (18)C26—C25—H25A109.00
C14—C15—C16120.26 (18)C26—C25—H25B110.00
C15—C16—C17120.0 (2)C26—C25—H25C110.00
C16—C17—C18120.3 (2)H25A—C25—H25B109.00
C13—C18—C17119.32 (18)H25A—C25—H25C109.00
C20—C19—C24120.65 (19)H25B—C25—H25C109.00
N4—C19—C24120.07 (17)C26—C27—H27117.00
N4—C19—C20119.25 (17)C28—C27—H27117.00
C19—C20—C21119.21 (18)C28—C29—H29A110.00
C20—C21—C22120.48 (18)C28—C29—H29B109.00
C21—C22—C23119.6 (2)C28—C29—H29C109.00
C22—C23—C24120.77 (18)H29A—C29—H29B109.00
C19—C24—C23119.29 (18)H29A—C29—H29C109.00
C25—C26—C27120.34 (19)H29B—C29—H29C110.00
Br1—Mo1—O1—C2686.31 (17)C6—C1—C2—C30.2 (3)
Br2—Mo1—O1—C2685.66 (17)N2—C1—C2—C3178.7 (2)
O2—Mo1—O1—C261.46 (17)C2—C1—C6—C50.7 (3)
N1—Mo1—O1—C26176.01 (18)C1—C2—C3—C40.6 (4)
Br1—Mo1—O2—C2883.01 (17)C2—C3—C4—C50.9 (4)
Br2—Mo1—O2—C2888.54 (17)C3—C4—C5—C60.3 (4)
O1—Mo1—O2—C283.05 (17)C4—C5—C6—C10.5 (4)
N3—Mo1—O2—C28176.24 (17)N2—C7—C12—C11179.3 (2)
Br1—Mo1—N1—N290.8 (2)N2—C7—C8—C9179.4 (3)
Br2—Mo1—N1—N299.9 (2)C8—C7—C12—C110.1 (4)
O1—Mo1—N1—N2176.5 (2)C12—C7—C8—C90.1 (4)
N3—Mo1—N1—N22.7 (2)C7—C8—C9—C100.2 (5)
Mo1—O1—C26—C25176.12 (15)C8—C9—C10—C110.4 (5)
Mo1—O1—C26—C273.4 (3)C9—C10—C11—C120.5 (5)
Mo1—O2—C28—C275.7 (3)C10—C11—C12—C70.2 (4)
Mo1—O2—C28—C29174.32 (15)C18—C13—C14—C151.0 (3)
Mo1—N1—N2—C136.7 (3)N4—C13—C14—C15178.12 (19)
Mo1—N1—N2—C7141.8 (2)C14—C13—C18—C170.0 (3)
C7—N2—C1—C6138.8 (2)N4—C13—C18—C17179.2 (2)
N1—N2—C7—C8140.8 (2)C13—C14—C15—C161.6 (3)
N1—N2—C1—C2138.6 (2)C14—C15—C16—C171.2 (4)
N1—N2—C7—C1238.5 (3)C15—C16—C17—C180.1 (4)
C7—N2—C1—C239.8 (3)C16—C17—C18—C130.5 (4)
C1—N2—C7—C840.8 (3)C20—C19—C24—C230.8 (3)
N1—N2—C1—C642.8 (3)C24—C19—C20—C210.3 (3)
C1—N2—C7—C12139.9 (2)N4—C19—C24—C23178.77 (18)
N3—N4—C13—C1837.7 (3)N4—C19—C20—C21177.72 (18)
C13—N4—C19—C20166.35 (18)C19—C20—C21—C221.1 (3)
N3—N4—C19—C24149.82 (19)C20—C21—C22—C230.8 (3)
N3—N4—C19—C2028.2 (3)C21—C22—C23—C240.3 (3)
C13—N4—C19—C2415.6 (3)C22—C23—C24—C191.1 (3)
C19—N4—C13—C1451.2 (3)O1—C26—C27—C281.1 (4)
N3—N4—C13—C14143.23 (19)C25—C26—C27—C28178.4 (2)
C19—N4—C13—C18128.0 (2)C26—C27—C28—C29176.5 (2)
N2—C1—C6—C5179.3 (2)C26—C27—C28—O23.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br20.952.923.712 (3)142
C20—H20···Br20.952.853.788 (2)168
C23—H23···O2i0.952.493.392 (2)158
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[MoBr2(C12H11N2)(C12H10N2)(C5H7O2)]
Mr720.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.5828 (11), 32.187 (4), 9.1455 (10)
β (°) 94.601 (2)
V3)2811.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.36 × 0.31 × 0.29
Data collection
DiffractometerBruker D8 Discover with SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.324, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
22331, 5678, 5133
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.05
No. of reflections5678
No. of parameters349
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Mo1—Br12.6023 (5)Mo1—O22.0530 (13)
Mo1—Br22.5646 (4)Mo1—N11.9638 (16)
Mo1—O12.1074 (16)Mo1—N31.7559 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br20.952.923.712 (3)142
C20—H20···Br20.952.853.788 (2)168
C23—H23···O2i0.952.493.392 (2)158
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the FONDECYT (grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06-10-R).

References

First citationBruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427–1433.  CrossRef CAS Google Scholar
First citationBustos, C., Sánchez, C., Schott, E., Garland, M. T. & Alvarez-Thon, L. (2006). Acta Cryst. E62, m3104–m3106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHenderson, R. A., Leigh, G. J. & Pickett, C. J. (1983). Adv. Inorg. Radiochem. 27, 197–292.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCleverty, J. A. (1987). Transition Met. Chem. 12, 282–287.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m675-m676
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds