organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­chloro­benzyl­­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 21 April 2011; accepted 4 May 2011; online 7 May 2011)

In the title mol­ecule, C16H14Cl2O4, the 1,3-dioxane and cyclo­hexane rings exhibit distorted boat and chair conformations, respectively. In the crystal, a pair of weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into an inversion dimer.

Related literature

For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Zeng (2011a[Zeng, W.-L. (2011a). Acta Cryst. E67, o276.],b[Zeng, W.-L. (2011b). Acta Cryst. E67, o426.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Cl2O4

  • Mr = 341.17

  • Triclinic, [P \overline 1]

  • a = 7.2378 (6) Å

  • b = 7.6496 (7) Å

  • c = 14.8099 (13) Å

  • α = 100.569 (2)°

  • β = 100.870 (2)°

  • γ = 99.050 (1)°

  • V = 775.80 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.934

  • 4085 measured reflections

  • 2697 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.073

  • S = 1.01

  • 2697 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.93 2.50 3.286 (3) 143
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have recently reported the crystal structures of 3-(4-bromobenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione and 3-(4-fluorobenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng, 2011a,b). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I), has been synthesized.

The crystal structure analysis (Fig. 1) confirms that the 1,3-dioxane ring and the benzene ring are connected via C10-C11 single bond [1.462 (3) Å] and C2C10 double bond [1.346 (3) Å]. The 1,3-dioxane ring has a distorted boat conformation with C4 atom common to the cyclohexane forming the flap. The cyclohexane ring exists in a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.552 Å, θ = 0.7°, ϕ = 242.54°.

Related literature top

For ring puckering parameters, see: Cremer & Pople (1975). For related structures, see: Zeng (2011a,b).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride (9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K, After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 2,4-dichlorobenzaldehyde (10.44 g, 0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an ethanol solution of (I) at room temperature over a period of one week.

Refinement top

H atoms were placed in calculated positions (C—H = 0.93 or 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids and spheres of arbitrary size for the H atoms.
3-(2,4-Dichlorobenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C16H14Cl2O4Z = 2
Mr = 341.17F(000) = 352
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2378 (6) ÅCell parameters from 1133 reflections
b = 7.6496 (7) Åθ = 3.0–26.3°
c = 14.8099 (13) ŵ = 0.43 mm1
α = 100.569 (2)°T = 298 K
β = 100.870 (2)°Block, colorless
γ = 99.050 (1)°0.24 × 0.22 × 0.16 mm
V = 775.80 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2697 independent reflections
Radiation source: fine-focus sealed tube1596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.903, Tmax = 0.934k = 98
4085 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
2697 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H14Cl2O4γ = 99.050 (1)°
Mr = 341.17V = 775.80 (12) Å3
Triclinic, P1Z = 2
a = 7.2378 (6) ÅMo Kα radiation
b = 7.6496 (7) ŵ = 0.43 mm1
c = 14.8099 (13) ÅT = 298 K
α = 100.569 (2)°0.24 × 0.22 × 0.16 mm
β = 100.870 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1596 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.934Rint = 0.023
4085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
2697 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24503 (11)1.26534 (9)0.42676 (5)0.0765 (3)
Cl20.26105 (12)1.05072 (12)0.75170 (5)0.0981 (3)
O10.0537 (2)0.4031 (2)0.21259 (10)0.0524 (4)
O20.1859 (2)0.5715 (2)0.11368 (10)0.0544 (4)
O30.0445 (2)0.5412 (2)0.33392 (12)0.0641 (5)
O40.2444 (3)0.8711 (2)0.14747 (12)0.0737 (6)
C10.0566 (4)0.5535 (3)0.27859 (17)0.0477 (6)
C20.1771 (3)0.7246 (3)0.27024 (16)0.0446 (6)
C30.2092 (4)0.7332 (4)0.17488 (18)0.0542 (7)
C40.1872 (3)0.4094 (3)0.15131 (15)0.0475 (6)
C50.1083 (4)0.2509 (3)0.06858 (15)0.0590 (7)
H5A0.01520.26480.03480.071*
H5B0.08900.13960.09110.071*
C60.2453 (5)0.2383 (4)0.00165 (18)0.0758 (9)
H6A0.19680.12920.04770.091*
H6B0.24970.34160.02780.091*
C70.4462 (5)0.2341 (4)0.0524 (2)0.0789 (9)
H7A0.53050.23600.00870.095*
H7B0.44470.12220.07450.095*
C80.5242 (4)0.3952 (4)0.13604 (18)0.0693 (8)
H8A0.54200.50640.11330.083*
H8B0.64830.38290.16990.083*
C90.3869 (3)0.4063 (3)0.20302 (16)0.0540 (7)
H9A0.38260.30250.23220.065*
H9B0.43430.51520.25250.065*
C100.2437 (3)0.8767 (3)0.33824 (16)0.0504 (6)
H100.29870.97590.31750.060*
C110.2451 (3)0.9140 (3)0.43884 (16)0.0466 (6)
C120.2502 (3)1.0907 (3)0.48706 (18)0.0499 (6)
C130.2546 (3)1.1339 (3)0.58226 (18)0.0583 (7)
H130.25571.25230.61220.070*
C140.2571 (4)0.9983 (4)0.63227 (17)0.0614 (7)
C150.2579 (4)0.8223 (4)0.58863 (18)0.0626 (7)
H150.26250.73230.62310.075*
C160.2516 (3)0.7824 (3)0.49329 (17)0.0556 (7)
H160.25180.66390.46410.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0930 (6)0.0474 (4)0.0950 (5)0.0228 (4)0.0231 (4)0.0214 (4)
Cl20.1014 (7)0.1296 (8)0.0606 (5)0.0288 (6)0.0176 (4)0.0099 (5)
O10.0548 (12)0.0464 (10)0.0572 (10)0.0053 (8)0.0212 (9)0.0094 (8)
O20.0702 (13)0.0456 (10)0.0496 (9)0.0117 (9)0.0128 (9)0.0161 (9)
O30.0681 (13)0.0590 (12)0.0697 (12)0.0082 (10)0.0341 (11)0.0100 (10)
O40.1040 (17)0.0512 (12)0.0730 (13)0.0128 (11)0.0244 (11)0.0288 (10)
C10.0491 (17)0.0479 (16)0.0474 (15)0.0122 (13)0.0102 (13)0.0121 (13)
C20.0489 (16)0.0360 (14)0.0520 (15)0.0104 (12)0.0141 (13)0.0126 (12)
C30.0559 (18)0.0515 (17)0.0574 (17)0.0132 (14)0.0092 (14)0.0189 (15)
C40.0528 (17)0.0466 (15)0.0479 (14)0.0090 (13)0.0178 (13)0.0166 (12)
C50.070 (2)0.0499 (16)0.0520 (15)0.0002 (14)0.0152 (14)0.0059 (13)
C60.103 (3)0.0626 (19)0.0573 (17)0.0016 (18)0.0341 (18)0.0017 (15)
C70.088 (3)0.072 (2)0.090 (2)0.0206 (18)0.051 (2)0.0148 (18)
C80.059 (2)0.0699 (19)0.0822 (19)0.0148 (16)0.0238 (16)0.0149 (17)
C90.0538 (18)0.0544 (16)0.0552 (15)0.0125 (13)0.0128 (14)0.0135 (13)
C100.0478 (17)0.0459 (16)0.0642 (17)0.0165 (13)0.0163 (13)0.0191 (14)
C110.0400 (16)0.0424 (15)0.0575 (16)0.0100 (12)0.0089 (12)0.0117 (13)
C120.0423 (16)0.0448 (15)0.0614 (16)0.0100 (12)0.0090 (12)0.0103 (13)
C130.0466 (17)0.0541 (17)0.0687 (18)0.0129 (13)0.0097 (14)0.0008 (15)
C140.0440 (18)0.076 (2)0.0596 (17)0.0110 (15)0.0103 (13)0.0060 (16)
C150.0577 (19)0.070 (2)0.0611 (18)0.0108 (15)0.0078 (15)0.0236 (16)
C160.0557 (18)0.0443 (15)0.0623 (17)0.0084 (13)0.0069 (14)0.0086 (14)
Geometric parameters (Å, º) top
Cl1—C121.739 (2)C7—C81.526 (3)
Cl2—C141.734 (2)C7—H7A0.9700
O1—C11.361 (3)C7—H7B0.9700
O1—C41.446 (2)C8—C91.532 (3)
O2—C31.358 (3)C8—H8A0.9700
O2—C41.450 (2)C8—H8B0.9700
O3—C11.203 (2)C9—H9A0.9700
O4—C31.206 (3)C9—H9B0.9700
C1—C21.493 (3)C10—C111.462 (3)
C2—C101.346 (3)C10—H100.9300
C2—C31.485 (3)C11—C121.400 (3)
C4—C51.507 (3)C11—C161.402 (3)
C4—C91.509 (3)C12—C131.381 (3)
C5—C61.530 (3)C13—C141.382 (3)
C5—H5A0.9700C13—H130.9300
C5—H5B0.9700C14—C151.383 (3)
C6—C71.514 (4)C15—C161.379 (3)
C6—H6A0.9700C15—H150.9300
C6—H6B0.9700C16—H160.9300
C1—O1—C4119.82 (19)H7A—C7—H7B108.0
C3—O2—C4118.34 (17)C7—C8—C9111.0 (2)
O3—C1—O1118.7 (2)C7—C8—H8A109.4
O3—C1—C2125.7 (2)C9—C8—H8A109.4
O1—C1—C2115.4 (2)C7—C8—H8B109.4
C10—C2—C3117.0 (2)C9—C8—H8B109.4
C10—C2—C1126.3 (2)H8A—C8—H8B108.0
C3—C2—C1116.4 (2)C4—C9—C8111.23 (19)
O4—C3—O2118.8 (2)C4—C9—H9A109.4
O4—C3—C2124.9 (2)C8—C9—H9A109.4
O2—C3—C2116.2 (2)C4—C9—H9B109.4
O1—C4—O2108.91 (17)C8—C9—H9B109.4
O1—C4—C5106.67 (19)H9A—C9—H9B108.0
O2—C4—C5106.30 (18)C2—C10—C11131.6 (2)
O1—C4—C9111.22 (17)C2—C10—H10114.2
O2—C4—C9110.75 (19)C11—C10—H10114.2
C5—C4—C9112.76 (19)C12—C11—C16116.3 (2)
C4—C5—C6111.0 (2)C12—C11—C10120.1 (2)
C4—C5—H5A109.4C16—C11—C10123.5 (2)
C6—C5—H5A109.4C13—C12—C11122.5 (2)
C4—C5—H5B109.4C13—C12—Cl1117.25 (19)
C6—C5—H5B109.4C11—C12—Cl1120.21 (19)
H5A—C5—H5B108.0C12—C13—C14118.8 (2)
C7—C6—C5111.9 (2)C12—C13—H13120.6
C7—C6—H6A109.2C14—C13—H13120.6
C5—C6—H6A109.2C13—C14—C15121.0 (2)
C7—C6—H6B109.2C13—C14—Cl2119.2 (2)
C5—C6—H6B109.2C15—C14—Cl2119.8 (2)
H6A—C6—H6B107.9C16—C15—C14119.0 (2)
C6—C7—C8111.6 (2)C16—C15—H15120.5
C6—C7—H7A109.3C14—C15—H15120.5
C8—C7—H7A109.3C15—C16—C11122.3 (2)
C6—C7—H7B109.3C15—C16—H16118.8
C8—C7—H7B109.3C11—C16—H16118.8
C4—O1—C1—O3173.9 (2)C6—C7—C8—C954.4 (3)
C4—O1—C1—C210.6 (3)O1—C4—C9—C8174.74 (18)
O3—C1—C2—C1023.5 (4)O2—C4—C9—C864.0 (2)
O1—C1—C2—C10161.3 (2)C5—C4—C9—C855.0 (3)
O3—C1—C2—C3149.8 (2)C7—C8—C9—C454.3 (3)
O1—C1—C2—C325.3 (3)C3—C2—C10—C11176.9 (2)
C4—O2—C3—O4166.2 (2)C1—C2—C10—C119.8 (4)
C4—O2—C3—C217.3 (3)C2—C10—C11—C12154.4 (2)
C10—C2—C3—O419.7 (4)C2—C10—C11—C1629.0 (4)
C1—C2—C3—O4154.3 (2)C16—C11—C12—C132.2 (4)
C10—C2—C3—O2164.1 (2)C10—C11—C12—C13179.0 (2)
C1—C2—C3—O221.9 (3)C16—C11—C12—Cl1179.42 (17)
C1—O1—C4—O247.4 (2)C10—C11—C12—Cl12.6 (3)
C1—O1—C4—C5161.76 (18)C11—C12—C13—C141.1 (4)
C1—O1—C4—C974.9 (2)Cl1—C12—C13—C14179.48 (19)
C3—O2—C4—O151.0 (3)C12—C13—C14—C150.8 (4)
C3—O2—C4—C5165.5 (2)C12—C13—C14—Cl2179.59 (19)
C3—O2—C4—C971.6 (2)C13—C14—C15—C161.4 (4)
O1—C4—C5—C6176.71 (19)Cl2—C14—C15—C16178.97 (19)
O2—C4—C5—C667.2 (3)C14—C15—C16—C110.2 (4)
C9—C4—C5—C654.3 (3)C12—C11—C16—C151.6 (4)
C4—C5—C6—C753.8 (3)C10—C11—C16—C15178.3 (2)
C5—C6—C7—C854.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.503.286 (3)143
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H14Cl2O4
Mr341.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2378 (6), 7.6496 (7), 14.8099 (13)
α, β, γ (°)100.569 (2), 100.870 (2), 99.050 (1)
V3)775.80 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
4085, 2697, 1596
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.073, 1.01
No. of reflections2697
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.503.286 (3)143
Symmetry code: (i) x, y+2, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. (2011a). Acta Cryst. E67, o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011b). Acta Cryst. E67, o426.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds