metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m759-m760

Bis{2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]-6-meth­­oxy­phenolato}palladium(II)

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2011; accepted 11 May 2011; online 20 May 2011)

In the title compound, [Pd(C15H13FNO2)2], the PdII atom is tetra­coordinated by two N atoms and two O atoms from the two 2-[(4-fluoro­benz­yl)imino­meth­yl]-6-meth­oxy­phen­oxy ligands, forming a square-planar geometry. The two N atoms and the two O atoms around the PdII atom are trans to each other. The dihedral angle between the two fluoro-substituted benzene rings is 39.03 (6)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal, weak inter­molecular C—H⋯π inter­actions occur.

Related literature

For applications of palladium(II)–Schiff base complexes, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Biochem. 92, 141-148.]); Gupta & Sutar (2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]). For related structures, see: Jiang et al. (2008[Jiang, W., Mo, G.-D. & Jin, L. (2008). Acta Cryst. E64, m1394.]); Tsai et al. (2009[Tsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.]); Mohd Tajuddin et al. (2010[Mohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.]); Lin et al. (2010[Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C15H13FNO2)2]

  • Mr = 622.93

  • Triclinic, [P \overline 1]

  • a = 10.0025 (4) Å

  • b = 11.0082 (4) Å

  • c = 12.3152 (4) Å

  • α = 109.550 (1)°

  • β = 98.368 (1)°

  • γ = 90.054 (1)°

  • V = 1262.45 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.54 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.677, Tmax = 0.885

  • 39095 measured reflections

  • 11056 independent reflections

  • 9774 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.03

  • 11056 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg5 are the centroids of the Pd1/N1/O1/C1/C6/C7, Pd1/O2/N2/C16/C21/C22, C1–C6 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O1 0.95 2.45 3.2051 (15) 136
C8—H8BCg2i 0.99 2.67 3.3882 (13) 130
C15—H15BCg5ii 0.98 2.71 3.6530 (15) 162
C23—H23ACg1ii 0.99 2.67 3.3612 (13) 127
C30—H30CCg3i 0.98 2.69 3.6146 (16) 158
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Palladium(II)-Schiff base complexes are well-known for their catalytic (Gupta & Sutar, 2008) and biological properties (Ali et al., 2002). Schiff bases containing iminoalkylphenolato groups commonly perform bidentate coordination with metal centres as shown in bis{2-[(E)-benzyliminomethyl]-4,6-dibromophenalato-κ2N,O}cobalt(II) (Jiang et al., 2008) and bis[2-(2H-benzotriazol-2-yl)-4-methyl-phenolato]palladium(II) (Tsai et al., 2009). The title compound, (I), is bis-bidentate (see Fig. 1) and related to the previously reported bis[2-(1-benzyliminoethyl)phenolato]palladium(II) (Mohd Tajuddin et al., 2010) but with different substituents on the iminoalkylphenolato and benzyl moieties.

The geometry around PdII atom is tetra-coordinated with a normal square planar environment in which two N atoms and two O atoms are coplanar. The two N atoms and two O atoms around the PdII atom are trans to each other. The bond angles of O1—Pd1—N1= 92.57 (4)°, O2—Pd1—N1 = 87.15 (4)°, O1—Pd1—N2 = 87.59 (4)°, O2—Pd1—N2= 92.70 (4)°, N1—Pd1—N2 = 179.85 ° and O1—Pd1—O2 = 179.60 (3) °. The distances between the PdII atom and O and N are 1.9717 (9), 1.9727 (9), 2.0194 (10) and 2.0209 (10) Å, respectively. These bond distances and angles are similar to those found in the crystal structure of bis[4-methyl-2- (2H-benzotriazol-2-yl)phenolato]palladium (II) (Tsai et al., 2009; Lin et al., 2010). The dihedral angle between the two fluoro-substituted benzene (C9–C14)/(C24–C29) rings is 39.03 (6)°.

In the crystal structure, (Fig. 2), the molecular packing is stablized by weak C29—H29A···O1 hydrogen bond and C—H···π interactions (Table 1), involving centroids, Cg1 (Pd1/N1/O1/C1/C6/C7), Cg2 (Pd1/O2/N2/C16/C21/C22), Cg3 (C1–C6) and Cg5 (C16–C21).

Related literature top

For applications of palladium(II)–Schiff base complexes, see: Ali et al. (2002); Gupta & Sutar (2008). For related structures, see: Jiang et al. (2008); Tsai et al. (2009); Mohd Tajuddin et al. (2010); Lin et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

(E)-2-[(4-fluorobenzyl)iminomethyl]-6-methoxyphenol (0.5196 g, 2 mmol) and palladium acetate (0.2249 g, 2 mmol) was each dissolved separately in acetonitrile (5 ml). The two solutions were then mixed and stirred under reflux for 4 hours upon which a brown precipitate was formed. It was isolated by gravity filtration, washed with cold acetonitrile and air dried at room temperature. The solid product was recrystallized from chloroform yielding yellow crystals (yield 97.1%, m.p. 526–529 K). Analytical calculation for C30H26F2N2O4Pd (%): C 57.84, H 4.21, N 4.50. Found (%): C 57.86, H 4.21, N 4.27. IR (cm-1): ν(CN) 1616 (s), ν(C–O) 1248 (s), ν(C–H) 2836 (w), ν(C–N) 1328 (m), ν(C–OCH3) 1084 (m), ν(Pd–O) 581 (w), ν(Pd–N) 495 (w). 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 7.728 (1H, s, HCN), 7.450–6.492

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.95–0.99 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. There exists a pseudo-symmetry relation in the molecule that is broken by the deviating orientation of the fluorophenyl rings. The highest residual electron density peak and the deepest hole are located 0.68 and 0.65 Å, respectively, from atom Pd1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the a axis.
Bis{2-[(E)-(4-fluorobenzyl)iminomethyl]-6-methoxyphenolato}palladium(II) top
Crystal data top
[Pd(C15H13FNO2)2]Z = 2
Mr = 622.93F(000) = 632
Triclinic, P1Dx = 1.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0025 (4) ÅCell parameters from 9774 reflections
b = 11.0082 (4) Åθ = 2.5–35.1°
c = 12.3152 (4) ŵ = 0.79 mm1
α = 109.550 (1)°T = 100 K
β = 98.368 (1)°Block, yellow
γ = 90.054 (1)°0.54 × 0.19 × 0.16 mm
V = 1262.45 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11056 independent reflections
Radiation source: fine-focus sealed tube9774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 35.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.677, Tmax = 0.885k = 1717
39095 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.7245P]
where P = (Fo2 + 2Fc2)/3
11056 reflections(Δ/σ)max = 0.001
354 parametersΔρmax = 1.95 e Å3
0 restraintsΔρmin = 1.72 e Å3
Crystal data top
[Pd(C15H13FNO2)2]γ = 90.054 (1)°
Mr = 622.93V = 1262.45 (8) Å3
Triclinic, P1Z = 2
a = 10.0025 (4) ÅMo Kα radiation
b = 11.0082 (4) ŵ = 0.79 mm1
c = 12.3152 (4) ÅT = 100 K
α = 109.550 (1)°0.54 × 0.19 × 0.16 mm
β = 98.368 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9774 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.885Rint = 0.027
39095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 1.95 e Å3
11056 reflectionsΔρmin = 1.72 e Å3
354 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.248588 (8)0.003817 (7)0.004344 (7)0.01066 (3)
F10.27490 (11)0.29889 (9)0.45715 (8)0.02764 (19)
F20.20856 (10)0.27200 (9)0.47652 (8)0.02562 (18)
O10.36986 (10)0.15058 (9)0.03227 (8)0.01505 (15)
O20.12766 (10)0.15832 (9)0.03987 (8)0.01526 (16)
O30.54754 (10)0.32234 (9)0.03930 (9)0.01810 (17)
O40.04950 (10)0.33148 (9)0.04619 (9)0.01818 (17)
N10.17806 (10)0.06583 (10)0.14915 (9)0.01244 (16)
N20.31884 (10)0.07394 (10)0.15808 (9)0.01247 (16)
C10.39256 (12)0.24727 (11)0.13077 (10)0.01246 (18)
C20.49156 (12)0.34497 (11)0.13870 (10)0.01365 (19)
C30.52321 (13)0.45087 (12)0.23893 (11)0.0169 (2)
H3A0.58960.51450.24260.020*
C40.45737 (14)0.46504 (13)0.33603 (12)0.0196 (2)
H4A0.48030.53750.40520.023*
C50.36016 (14)0.37416 (12)0.33048 (11)0.0175 (2)
H5A0.31500.38500.39560.021*
C60.32634 (12)0.26388 (11)0.22825 (10)0.01328 (18)
C70.22130 (12)0.17496 (11)0.22910 (10)0.01358 (18)
H7A0.17830.19910.29660.016*
C80.07085 (12)0.00674 (11)0.17704 (10)0.01394 (19)
H8A0.01790.06460.10350.017*
H8B0.00850.05490.21940.017*
C90.12744 (12)0.08626 (11)0.25037 (10)0.01400 (19)
C100.05718 (13)0.09792 (12)0.33660 (11)0.0178 (2)
H10A0.02460.05510.34860.021*
C110.10491 (15)0.17143 (13)0.40555 (12)0.0207 (2)
H11A0.05620.18010.46350.025*
C120.22457 (15)0.23096 (12)0.38736 (11)0.0196 (2)
C130.29778 (15)0.22301 (12)0.30226 (11)0.0196 (2)
H13A0.37970.26580.29130.023*
C140.24736 (13)0.15024 (12)0.23327 (11)0.0171 (2)
H14A0.29520.14410.17390.021*
C150.64506 (14)0.41740 (13)0.04021 (12)0.0192 (2)
H15A0.67720.39170.03540.029*
H15B0.72160.42500.10210.029*
H15C0.60340.50080.05460.029*
C160.10422 (12)0.25480 (11)0.13811 (10)0.01267 (18)
C170.00590 (12)0.35324 (11)0.14546 (11)0.01388 (19)
C180.02515 (13)0.45995 (12)0.24528 (11)0.0170 (2)
H18A0.09090.52390.24850.020*
C190.04061 (15)0.47427 (12)0.34260 (12)0.0191 (2)
H19A0.01840.54730.41140.023*
C200.13651 (14)0.38259 (12)0.33769 (11)0.0175 (2)
H20A0.18150.39350.40290.021*
C210.16949 (12)0.27135 (11)0.23629 (10)0.01365 (19)
C220.27473 (12)0.18294 (11)0.23782 (10)0.01387 (19)
H22A0.31710.20740.30560.017*
C230.42827 (12)0.00312 (11)0.18626 (10)0.01336 (18)
H23A0.49130.06550.22660.016*
H23B0.47990.05670.11300.016*
C240.37152 (12)0.07264 (11)0.26307 (10)0.01318 (18)
C250.37981 (13)0.02717 (12)0.38181 (10)0.0167 (2)
H25A0.42280.05100.41360.020*
C260.32631 (14)0.09414 (13)0.45479 (11)0.0190 (2)
H26A0.33250.06300.53560.023*
C270.26401 (14)0.20716 (13)0.40591 (11)0.0173 (2)
C280.25358 (14)0.25643 (12)0.28829 (11)0.0173 (2)
H28A0.20990.33440.25730.021*
C290.30892 (13)0.18839 (11)0.21691 (10)0.0158 (2)
H29A0.30410.22100.13580.019*
C300.14487 (14)0.42819 (13)0.04730 (13)0.0194 (2)
H30A0.17600.40410.02860.029*
H30B0.10190.51100.06290.029*
H30C0.22230.43600.10840.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01183 (4)0.00891 (4)0.01172 (4)0.00181 (3)0.00113 (3)0.00440 (3)
F10.0435 (6)0.0223 (4)0.0244 (4)0.0072 (4)0.0073 (4)0.0166 (3)
F20.0345 (5)0.0268 (4)0.0219 (4)0.0067 (4)0.0042 (3)0.0165 (3)
O10.0188 (4)0.0115 (3)0.0142 (4)0.0055 (3)0.0029 (3)0.0033 (3)
O20.0182 (4)0.0113 (3)0.0152 (4)0.0052 (3)0.0033 (3)0.0028 (3)
O30.0202 (4)0.0147 (4)0.0195 (4)0.0066 (3)0.0049 (3)0.0052 (3)
O40.0190 (4)0.0145 (4)0.0217 (4)0.0050 (3)0.0063 (3)0.0058 (3)
N10.0132 (4)0.0117 (4)0.0136 (4)0.0011 (3)0.0019 (3)0.0059 (3)
N20.0137 (4)0.0114 (4)0.0137 (4)0.0011 (3)0.0023 (3)0.0059 (3)
C10.0134 (4)0.0099 (4)0.0144 (4)0.0013 (3)0.0005 (3)0.0052 (3)
C20.0144 (5)0.0110 (4)0.0158 (5)0.0023 (3)0.0011 (4)0.0055 (4)
C30.0175 (5)0.0113 (4)0.0200 (5)0.0038 (4)0.0007 (4)0.0035 (4)
C40.0223 (6)0.0140 (5)0.0191 (5)0.0034 (4)0.0022 (4)0.0018 (4)
C50.0211 (5)0.0134 (5)0.0163 (5)0.0024 (4)0.0032 (4)0.0028 (4)
C60.0147 (5)0.0114 (4)0.0138 (4)0.0014 (3)0.0013 (3)0.0047 (4)
C70.0155 (5)0.0120 (4)0.0143 (4)0.0002 (4)0.0025 (4)0.0057 (4)
C80.0133 (5)0.0142 (4)0.0156 (5)0.0016 (4)0.0029 (4)0.0064 (4)
C90.0161 (5)0.0113 (4)0.0148 (5)0.0022 (3)0.0026 (4)0.0047 (4)
C100.0202 (5)0.0165 (5)0.0189 (5)0.0015 (4)0.0063 (4)0.0075 (4)
C110.0266 (6)0.0185 (5)0.0206 (5)0.0024 (4)0.0072 (5)0.0096 (4)
C120.0301 (7)0.0138 (5)0.0174 (5)0.0005 (4)0.0042 (4)0.0085 (4)
C130.0256 (6)0.0164 (5)0.0196 (5)0.0040 (4)0.0053 (4)0.0091 (4)
C140.0211 (5)0.0150 (5)0.0183 (5)0.0018 (4)0.0062 (4)0.0084 (4)
C150.0179 (5)0.0168 (5)0.0245 (6)0.0048 (4)0.0038 (4)0.0090 (4)
C160.0130 (4)0.0102 (4)0.0153 (5)0.0014 (3)0.0012 (3)0.0053 (4)
C170.0141 (5)0.0108 (4)0.0169 (5)0.0020 (3)0.0015 (4)0.0053 (4)
C180.0180 (5)0.0117 (4)0.0196 (5)0.0042 (4)0.0001 (4)0.0044 (4)
C190.0243 (6)0.0126 (5)0.0175 (5)0.0044 (4)0.0013 (4)0.0022 (4)
C200.0216 (5)0.0131 (5)0.0159 (5)0.0026 (4)0.0022 (4)0.0028 (4)
C210.0155 (5)0.0114 (4)0.0145 (5)0.0012 (3)0.0018 (4)0.0051 (4)
C220.0164 (5)0.0121 (4)0.0144 (5)0.0008 (4)0.0033 (4)0.0057 (4)
C230.0131 (4)0.0121 (4)0.0163 (5)0.0008 (3)0.0034 (4)0.0063 (4)
C240.0138 (4)0.0121 (4)0.0143 (4)0.0018 (3)0.0027 (3)0.0051 (4)
C250.0203 (5)0.0149 (5)0.0155 (5)0.0013 (4)0.0042 (4)0.0052 (4)
C260.0235 (6)0.0196 (5)0.0146 (5)0.0012 (4)0.0039 (4)0.0063 (4)
C270.0201 (5)0.0180 (5)0.0162 (5)0.0002 (4)0.0015 (4)0.0095 (4)
C280.0243 (6)0.0125 (4)0.0161 (5)0.0001 (4)0.0033 (4)0.0059 (4)
C290.0219 (5)0.0120 (4)0.0141 (5)0.0008 (4)0.0037 (4)0.0047 (4)
C300.0168 (5)0.0165 (5)0.0286 (6)0.0030 (4)0.0051 (4)0.0115 (5)
Geometric parameters (Å, º) top
Pd1—O11.9717 (9)C11—H11A0.9500
Pd1—O21.9727 (9)C12—C131.3882 (19)
Pd1—N12.0194 (10)C13—C141.3962 (18)
Pd1—N22.0209 (10)C13—H13A0.9500
F1—C121.3624 (16)C14—H14A0.9500
F2—C271.3599 (15)C15—H15A0.9800
O1—C11.3081 (14)C15—H15B0.9800
O2—C161.3053 (14)C15—H15C0.9800
O3—C21.3674 (15)C16—C211.4156 (16)
O3—C151.4261 (15)C16—C171.4339 (16)
O4—C171.3639 (15)C17—C181.3818 (17)
O4—C301.4241 (16)C18—C191.4132 (19)
N1—C71.2974 (15)C18—H18A0.9500
N1—C81.4817 (15)C19—C201.3721 (18)
N2—C221.2974 (15)C19—H19A0.9500
N2—C231.4888 (15)C20—C211.4225 (17)
C1—C61.4136 (16)C20—H20A0.9500
C1—C21.4305 (16)C21—C221.4394 (17)
C2—C31.3804 (17)C22—H22A0.9500
C3—C41.4117 (19)C23—C241.5117 (17)
C3—H3A0.9500C23—H23A0.9900
C4—C51.3725 (18)C23—H23B0.9900
C4—H4A0.9500C24—C251.3934 (16)
C5—C61.4232 (17)C24—C291.3996 (17)
C5—H5A0.9500C25—C261.3934 (18)
C6—C71.4388 (17)C25—H25A0.9500
C7—H7A0.9500C26—C271.3813 (18)
C8—C91.5111 (18)C26—H26A0.9500
C8—H8A0.9900C27—C281.3862 (17)
C8—H8B0.9900C28—C291.3929 (18)
C9—C101.3951 (17)C28—H28A0.9500
C9—C141.3983 (17)C29—H29A0.9500
C10—C111.3951 (19)C30—H30A0.9800
C10—H10A0.9500C30—H30B0.9800
C11—C121.376 (2)C30—H30C0.9800
O1—Pd1—O2179.60 (3)C13—C14—H14A119.6
O1—Pd1—N192.57 (4)C9—C14—H14A119.6
O2—Pd1—N187.15 (4)O3—C15—H15A109.5
O1—Pd1—N287.59 (4)O3—C15—H15B109.5
O2—Pd1—N292.70 (4)H15A—C15—H15B109.5
N1—Pd1—N2179.85 (4)O3—C15—H15C109.5
C1—O1—Pd1126.95 (8)H15A—C15—H15C109.5
C16—O2—Pd1126.89 (8)H15B—C15—H15C109.5
C2—O3—C15116.63 (10)O2—C16—C21125.54 (10)
C17—O4—C30116.34 (10)O2—C16—C17116.76 (10)
C7—N1—C8115.47 (10)C21—C16—C17117.69 (10)
C7—N1—Pd1123.53 (8)O4—C17—C18124.87 (11)
C8—N1—Pd1121.00 (7)O4—C17—C16113.91 (10)
C22—N2—C23115.28 (10)C18—C17—C16121.21 (11)
C22—N2—Pd1123.34 (8)C17—C18—C19120.21 (11)
C23—N2—Pd1121.36 (7)C17—C18—H18A119.9
O1—C1—C6125.61 (10)C19—C18—H18A119.9
O1—C1—C2116.59 (10)C20—C19—C18119.96 (11)
C6—C1—C2117.80 (10)C20—C19—H19A120.0
O3—C2—C3125.21 (11)C18—C19—H19A120.0
O3—C2—C1113.62 (10)C19—C20—C21120.91 (12)
C3—C2—C1121.16 (11)C19—C20—H20A119.5
C2—C3—C4120.27 (11)C21—C20—H20A119.5
C2—C3—H3A119.9C16—C21—C20120.01 (11)
C4—C3—H3A119.9C16—C21—C22123.08 (10)
C5—C4—C3120.00 (12)C20—C21—C22116.84 (11)
C5—C4—H4A120.0N2—C22—C21128.03 (11)
C3—C4—H4A120.0N2—C22—H22A116.0
C4—C5—C6120.70 (12)C21—C22—H22A116.0
C4—C5—H5A119.7N2—C23—C24111.43 (10)
C6—C5—H5A119.7N2—C23—H23A109.3
C1—C6—C5120.05 (11)C24—C23—H23A109.3
C1—C6—C7122.95 (10)N2—C23—H23B109.3
C5—C6—C7116.98 (11)C24—C23—H23B109.3
N1—C7—C6128.04 (11)H23A—C23—H23B108.0
N1—C7—H7A116.0C25—C24—C29118.91 (11)
C6—C7—H7A116.0C25—C24—C23120.18 (10)
N1—C8—C9112.50 (10)C29—C24—C23120.91 (10)
N1—C8—H8A109.1C24—C25—C26121.27 (11)
C9—C8—H8A109.1C24—C25—H25A119.4
N1—C8—H8B109.1C26—C25—H25A119.4
C9—C8—H8B109.1C27—C26—C25117.94 (11)
H8A—C8—H8B107.8C27—C26—H26A121.0
C10—C9—C14118.88 (12)C25—C26—H26A121.0
C10—C9—C8119.18 (11)F2—C27—C26118.60 (11)
C14—C9—C8121.93 (10)F2—C27—C28118.47 (12)
C9—C10—C11121.15 (12)C26—C27—C28122.92 (12)
C9—C10—H10A119.4C27—C28—C29118.09 (11)
C11—C10—H10A119.4C27—C28—H28A121.0
C12—C11—C10118.16 (12)C29—C28—H28A121.0
C12—C11—H11A120.9C28—C29—C24120.88 (11)
C10—C11—H11A120.9C28—C29—H29A119.6
F1—C12—C11118.70 (12)C24—C29—H29A119.6
F1—C12—C13118.39 (13)O4—C30—H30A109.5
C11—C12—C13122.90 (13)O4—C30—H30B109.5
C12—C13—C14118.01 (12)H30A—C30—H30B109.5
C12—C13—H13A121.0O4—C30—H30C109.5
C14—C13—H13A121.0H30A—C30—H30C109.5
C13—C14—C9120.89 (11)H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg5 are the centroids of the Pd1/N1/O1/C1/C6/C7, Pd1/O2/N2/C16/C21/C22, C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.952.453.2051 (15)136
C8—H8B···Cg2i0.992.673.3882 (13)130
C15—H15B···Cg5ii0.982.713.6530 (15)162
C23—H23A···Cg1ii0.992.673.3612 (13)127
C30—H30C···Cg3i0.982.693.6146 (16)158
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C15H13FNO2)2]
Mr622.93
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.0025 (4), 11.0082 (4), 12.3152 (4)
α, β, γ (°)109.550 (1), 98.368 (1), 90.054 (1)
V3)1262.45 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.54 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.677, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
39095, 11056, 9774
Rint0.027
(sin θ/λ)max1)0.812
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.03
No. of reflections11056
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.95, 1.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg5 are the centroids of the Pd1/N1/O1/C1/C6/C7, Pd1/O2/N2/C16/C21/C22, C1–C6 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.952.453.2051 (15)136
C8—H8B···Cg2i0.992.673.3882 (13)130
C15—H15B···Cg5ii0.982.713.6530 (15)162
C23—H23A···Cg1ii0.992.673.3612 (13)127
C30—H30C···Cg3i0.982.693.6146 (16)158
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HB, AMT, WNWI would like to acknowledge the Ministry of Higher Education of Malaysia for research grant No. 600-RMI/ST/FRGS5/3/Fst(7/2009), Universiti Teknologi MARA and Universiti Sains Malaysia for the facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Biochem. 92, 141–148.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationJiang, W., Mo, G.-D. & Jin, L. (2008). Acta Cryst. E64, m1394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, C.-Y., Lin, C.-H. & Ko, B.-T. (2009). Acta Cryst. E65, m619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m759-m760
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds