organic compounds
2-Methyl-5-nitro-1H-benzimidazole monohydrate
aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C8H7N3O2·H2O, the 2-methyl-5-nitro-1H-benzimidazole molecule, excluding the methyl H atoms, is approximately planar, with a maximum deviation of 0.137 (1) Å. The is stabilized by water molecules via N—H⋯O(water), O(water)—H⋯O and O(water)—H⋯N hydrogen bonds, forming sheets parallel to the (100) plane. A short intermolecular contact between the benzene and imidazole rings, with a centroid–centroid distance of 3.6419 (10) Å, indicates a π–π interaction.
Related literature
For general background to and the potential biological activity of benzimidazole derivatives, see: Puratchikody et al. (2008); Tonelli et al. (2010); Shingalapur et al. (2010); Refaat (2010); Lazer et al. (1987). For the preparation of the title compound, see: Umare et al. (2008); Singh & Pathak (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For related structures, see: Eltayeb et al. (2009); Arumugam et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811019027/is2711sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019027/is2711Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811019027/is2711Isup3.cml
4-Nitro-o-phenylenediamine (1.53 g) was well dissolved in acetic acid and refluxed on a heating mantle for 6 h. The reaction mixture was dried on rotavapor at low pressure to give the solid mass which was then crystallized with alcohol-chloroform (1:1 v/v) mixture to give the brownish crystals of title compound (Umare et al., 2008; Singh & Pathak, 2008), yield 50%, m.p. 496-498 K. Melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected.
O- and N-bound H atoms were located in a difference Fourier map and refined freely [O—H = 0.83 (2)–0.92 (3) Å, N1—H1N1 = 0.91 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl group. The highest residual electron density peak is located at 0.66 Å from C3 and the deepest hole is located at 0.67 Å from N3.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C8H7N3O2·H2O | Z = 2 |
Mr = 195.18 | F(000) = 204 |
Triclinic, P1 | Dx = 1.485 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9051 (10) Å | Cell parameters from 2800 reflections |
b = 7.1309 (11) Å | θ = 3.1–29.8° |
c = 10.0653 (15) Å | µ = 0.12 mm−1 |
α = 79.421 (3)° | T = 100 K |
β = 73.062 (3)° | Needle, brown |
γ = 67.517 (3)° | 0.52 × 0.19 × 0.14 mm |
V = 436.61 (11) Å3 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 1784 independent reflections |
Radiation source: fine-focus sealed tube | 1506 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.942, Tmax = 0.984 | k = −8→8 |
6312 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0635P)2 + 0.1355P] where P = (Fo2 + 2Fc2)/3 |
1784 reflections | (Δ/σ)max = 0.001 |
140 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C8H7N3O2·H2O | γ = 67.517 (3)° |
Mr = 195.18 | V = 436.61 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9051 (10) Å | Mo Kα radiation |
b = 7.1309 (11) Å | µ = 0.12 mm−1 |
c = 10.0653 (15) Å | T = 100 K |
α = 79.421 (3)° | 0.52 × 0.19 × 0.14 mm |
β = 73.062 (3)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 1784 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1506 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.984 | Rint = 0.032 |
6312 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.30 e Å−3 |
1784 reflections | Δρmin = −0.35 e Å−3 |
140 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23733 (19) | −0.19984 (17) | 0.30176 (12) | 0.0281 (3) | |
O2 | 0.2283 (2) | 0.0307 (2) | 0.41865 (11) | 0.0350 (3) | |
N1 | 0.26105 (19) | 0.47231 (19) | −0.17804 (12) | 0.0176 (3) | |
N2 | 0.2160 (2) | 0.17912 (19) | −0.18388 (12) | 0.0190 (3) | |
N3 | 0.2355 (2) | −0.0294 (2) | 0.30934 (13) | 0.0220 (3) | |
C1 | 0.2320 (3) | 0.4036 (2) | −0.40419 (15) | 0.0248 (4) | |
H1A | 0.1500 | 0.3383 | −0.4285 | 0.037* | |
H1B | 0.3773 | 0.3594 | −0.4608 | 0.037* | |
H1C | 0.1669 | 0.5486 | −0.4198 | 0.037* | |
C2 | 0.2349 (2) | 0.3487 (2) | −0.25514 (15) | 0.0186 (3) | |
C3 | 0.2308 (2) | 0.1917 (2) | −0.05118 (14) | 0.0167 (3) | |
C4 | 0.2203 (2) | 0.0559 (2) | 0.06588 (15) | 0.0183 (3) | |
H4A | 0.1994 | −0.0652 | 0.0652 | 0.022* | |
C5 | 0.2426 (2) | 0.1109 (2) | 0.18391 (15) | 0.0185 (3) | |
C6 | 0.2731 (2) | 0.2924 (2) | 0.19023 (15) | 0.0189 (3) | |
H6A | 0.2881 | 0.3206 | 0.2726 | 0.023* | |
C7 | 0.2808 (2) | 0.4286 (2) | 0.07407 (15) | 0.0187 (3) | |
H7A | 0.2995 | 0.5504 | 0.0760 | 0.022* | |
C8 | 0.2594 (2) | 0.3764 (2) | −0.04673 (15) | 0.0168 (3) | |
O1W | 0.28031 (19) | 0.83785 (17) | 0.68930 (12) | 0.0244 (3) | |
H1N1 | 0.265 (3) | 0.598 (4) | −0.212 (2) | 0.036 (5)* | |
H1W1 | 0.269 (3) | 0.877 (3) | 0.608 (2) | 0.036 (5)* | |
H2W1 | 0.257 (4) | 0.949 (4) | 0.734 (2) | 0.052 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0388 (7) | 0.0180 (6) | 0.0275 (6) | −0.0098 (5) | −0.0114 (5) | 0.0032 (5) |
O2 | 0.0605 (8) | 0.0352 (7) | 0.0160 (6) | −0.0209 (6) | −0.0151 (5) | 0.0003 (5) |
N1 | 0.0242 (6) | 0.0138 (7) | 0.0168 (6) | −0.0068 (5) | −0.0075 (5) | −0.0017 (5) |
N2 | 0.0259 (6) | 0.0153 (6) | 0.0177 (6) | −0.0062 (5) | −0.0089 (5) | −0.0028 (5) |
N3 | 0.0248 (7) | 0.0214 (7) | 0.0194 (7) | −0.0065 (5) | −0.0076 (5) | −0.0004 (5) |
C1 | 0.0349 (8) | 0.0219 (8) | 0.0186 (8) | −0.0083 (7) | −0.0104 (6) | −0.0017 (6) |
C2 | 0.0212 (7) | 0.0157 (7) | 0.0191 (7) | −0.0040 (6) | −0.0069 (6) | −0.0042 (6) |
C3 | 0.0185 (7) | 0.0161 (7) | 0.0162 (7) | −0.0041 (6) | −0.0064 (5) | −0.0036 (5) |
C4 | 0.0211 (7) | 0.0137 (7) | 0.0211 (8) | −0.0056 (6) | −0.0062 (5) | −0.0033 (6) |
C5 | 0.0197 (7) | 0.0179 (8) | 0.0163 (7) | −0.0043 (6) | −0.0061 (5) | 0.0000 (6) |
C6 | 0.0203 (7) | 0.0206 (8) | 0.0165 (7) | −0.0049 (6) | −0.0066 (5) | −0.0051 (6) |
C7 | 0.0203 (7) | 0.0166 (7) | 0.0216 (7) | −0.0061 (6) | −0.0066 (6) | −0.0057 (6) |
C8 | 0.0179 (7) | 0.0146 (7) | 0.0177 (7) | −0.0041 (5) | −0.0053 (5) | −0.0030 (5) |
O1W | 0.0428 (7) | 0.0166 (6) | 0.0191 (6) | −0.0125 (5) | −0.0127 (5) | −0.0008 (5) |
O1—N3 | 1.2271 (18) | C3—C4 | 1.384 (2) |
O2—N3 | 1.2334 (17) | C3—C8 | 1.414 (2) |
N1—C2 | 1.3660 (18) | C4—C5 | 1.383 (2) |
N1—C8 | 1.3710 (19) | C4—H4A | 0.9300 |
N1—H1N1 | 0.91 (2) | C5—C6 | 1.404 (2) |
N2—C2 | 1.320 (2) | C6—C7 | 1.378 (2) |
N2—C3 | 1.3905 (18) | C6—H6A | 0.9300 |
N3—C5 | 1.4609 (19) | C7—C8 | 1.3973 (19) |
C1—C2 | 1.483 (2) | C7—H7A | 0.9300 |
C1—H1A | 0.9600 | O1W—H1W1 | 0.83 (2) |
C1—H1B | 0.9600 | O1W—H2W1 | 0.92 (3) |
C1—H1C | 0.9600 | ||
C2—N1—C8 | 107.18 (12) | N2—C3—C8 | 109.57 (13) |
C2—N1—H1N1 | 122.1 (13) | C5—C4—C3 | 116.11 (13) |
C8—N1—H1N1 | 130.4 (13) | C5—C4—H4A | 121.9 |
C2—N2—C3 | 104.83 (12) | C3—C4—H4A | 121.9 |
O1—N3—O2 | 123.11 (13) | C4—C5—C6 | 124.00 (14) |
O1—N3—C5 | 119.20 (13) | C4—C5—N3 | 117.95 (13) |
O2—N3—C5 | 117.69 (13) | C6—C5—N3 | 118.05 (13) |
C2—C1—H1A | 109.5 | C7—C6—C5 | 119.80 (13) |
C2—C1—H1B | 109.5 | C7—C6—H6A | 120.1 |
H1A—C1—H1B | 109.5 | C5—C6—H6A | 120.1 |
C2—C1—H1C | 109.5 | C6—C7—C8 | 117.33 (14) |
H1A—C1—H1C | 109.5 | C6—C7—H7A | 121.3 |
H1B—C1—H1C | 109.5 | C8—C7—H7A | 121.3 |
N2—C2—N1 | 113.13 (13) | N1—C8—C7 | 132.77 (14) |
N2—C2—C1 | 124.88 (13) | N1—C8—C3 | 105.30 (12) |
N1—C2—C1 | 121.98 (13) | C7—C8—C3 | 121.93 (14) |
C4—C3—N2 | 129.61 (13) | H1W1—O1W—H2W1 | 109 (2) |
C4—C3—C8 | 120.82 (13) | ||
C3—N2—C2—N1 | −0.04 (16) | O2—N3—C5—C6 | 9.3 (2) |
C3—N2—C2—C1 | 179.09 (13) | C4—C5—C6—C7 | 0.4 (2) |
C8—N1—C2—N2 | 0.05 (16) | N3—C5—C6—C7 | 179.98 (12) |
C8—N1—C2—C1 | −179.10 (13) | C5—C6—C7—C8 | −0.6 (2) |
C2—N2—C3—C4 | 179.60 (14) | C2—N1—C8—C7 | 179.43 (15) |
C2—N2—C3—C8 | 0.01 (15) | C2—N1—C8—C3 | −0.04 (15) |
N2—C3—C4—C5 | 179.45 (13) | C6—C7—C8—N1 | −179.40 (14) |
C8—C3—C4—C5 | −1.0 (2) | C6—C7—C8—C3 | 0.0 (2) |
C3—C4—C5—C6 | 0.4 (2) | C4—C3—C8—N1 | −179.62 (12) |
C3—C4—C5—N3 | −179.17 (12) | N2—C3—C8—N1 | 0.02 (15) |
O1—N3—C5—C4 | 9.0 (2) | C4—C3—C8—C7 | 0.8 (2) |
O2—N3—C5—C4 | −171.14 (13) | N2—C3—C8—C7 | −179.52 (12) |
O1—N3—C5—C6 | −170.60 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1Wi | 0.91 (3) | 1.84 (2) | 2.7347 (18) | 170 (2) |
O1W—H1W1···O2ii | 0.831 (19) | 2.06 (2) | 2.8737 (17) | 168.5 (19) |
O1W—H2W1···N2iii | 0.92 (3) | 1.86 (3) | 2.7808 (18) | 177.2 (17) |
Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z; (iii) x, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H7N3O2·H2O |
Mr | 195.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.9051 (10), 7.1309 (11), 10.0653 (15) |
α, β, γ (°) | 79.421 (3), 73.062 (3), 67.517 (3) |
V (Å3) | 436.61 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.52 × 0.19 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.942, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6312, 1784, 1506 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.115, 1.06 |
No. of reflections | 1784 |
No. of parameters | 140 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.35 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1Wi | 0.91 (3) | 1.84 (2) | 2.7347 (18) | 170 (2) |
O1W—H1W1···O2ii | 0.831 (19) | 2.06 (2) | 2.8737 (17) | 168.5 (19) |
O1W—H2W1···N2iii | 0.92 (3) | 1.86 (3) | 2.7808 (18) | 177.2 (17) |
Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z; (iii) x, y+1, z+1. |
Acknowledgements
We would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant 1001/PTEKIND/8140152. HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arumugam, N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2412–o2413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lazer, E. S., Matteo, M. R. & Possanza, G. J. (1987). J. Med. Chem. 30, 726–729. CrossRef CAS PubMed Web of Science Google Scholar
Puratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273–281. Web of Science CrossRef PubMed CAS Google Scholar
Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shingalapur, R. V., Hosamani, K. M., Keri, R. S. & Hugar, M. H. (2010). Eur. J. Med. Chem. 45, 1753–1759. Web of Science CrossRef CAS PubMed Google Scholar
Singh, J. & Pathak, D. P. (2008). Orient. J. Chem. 24, 175–180. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tonelli, M., Simone, M., Tasso, B., Novelli, F., Boido, V., Sparatore, F., Paglietti, G., Pricl, S., Giliberti, G., Blois, S., Ibba, C., Sanna, G., Loddo, R. & La Colla, P. (2010). Bioorg. Med. Chem. 18, 2937–2953. Web of Science CrossRef CAS PubMed Google Scholar
Umare, V. D., Ingle, V. N. & Wanare, R. K. (2008). Indian J. Heterocycl. Chem. 17, 253–256. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
benzimidazoles are aromatic heterocylic organic compounds of wide biological importance. They are reported as antimicrobial (Puratchikody et al., 2008), antiviral (Tonelli et al., 2010), anticancer (Refaat, 2010), anti-inflammatory (Lazer et al., 1987) and anti-diabetic (Shingalapur et al., 2010) agents.
The molecular structure of the title compound is shown in Fig. 1. The 2-methyl-5-nitro-1H-benzimidazole molecule (O1/O2/N1-N3/C1-C8), excluding methyl H atoms, is almost planar, with a maximum deviation of 0.137 (1) Å for atom O2. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Eltayeb et al., 2009; Arumugam et al., 2010).
The crystal structure (Fig. 2) is stabilized by water molecules via intermolecular N1—H1N1···O1W, O1W—H1W1···O2 and O1W—H2W1···N2 hydrogen bonds to form sheets parallel to the (100) plane. The crystal packing is further consolidated by π–π stacking interactions between the centroids of N1/N2/C2/C3/C8 (Cg1) and C3–C8 (Cg2) rings, with Cg1···Cg2iii distance of 3.6419 (10) Å [symmetry code: (iii) -x, 1 - y, -z].