organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3a,8a-Dihy­dr­oxy-1,3,3a,8a-tetra­hydro­indeno­[1,2-d]imidazole-2,8-dione

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title mol­ecule, C10H8N2O4, the imidazolidine ring adopts a twisted conformation. In the crystal, the mol­ecules are linked via a pair of bifurcated inter­molecular O—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are further linked via N—H⋯O hydrogen bonds into a tape along the b axis.

Related literature

For general background to and the properties of ninhydrinurea derivatives, see: Caputo et al. (1987[Caputo, R., Ferreri, C., Palumbo, G., Adovasio, V. & Nardelli, M. (1987). Gazz. Chim. Ital. 117, 731-738.]); Kaupp et al. (2002[Kaupp, G., Naimi-Jamal, M. R. & Schmeyers, J. (2002). Chem. Eur. J. 8, 594-600.]); Sarra & Stephani (2000[Sarra, J. D. & Stephani, R. A. (2000). Med. Chem. Res. 10, 81-91.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O4

  • Mr = 220.18

  • Triclinic, [P \overline 1]

  • a = 6.7914 (2) Å

  • b = 7.3201 (2) Å

  • c = 9.5006 (3) Å

  • α = 94.258 (1)°

  • β = 102.773 (1)°

  • γ = 93.725 (1)°

  • V = 457.74 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.39 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.994

  • 6684 measured reflections

  • 2081 independent reflections

  • 1634 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 2081 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1i 0.89 (3) 2.02 (3) 2.8653 (17) 158 (2)
O2—H1O2⋯O1i 0.95 (3) 1.89 (3) 2.8103 (17) 163 (2)
N2—H1N2⋯O4ii 0.83 (2) 2.454 (19) 3.1282 (19) 139.3 (18)
N1—H1N1⋯O4iii 0.86 (2) 2.06 (2) 2.8841 (18) 159.4 (19)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+2; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound ninhydrinurea (Caputo et al., 1987; Kaupp et al., 2002; Sarra & Stephani, 2000) has been synthesized by a new route.

In the title compound, Fig. 1, the imidazolidine ring (N1/N2/C1/C2/C10) is twisted about the N2—C10 bond with puckering parameters (Cremer & Pople, 1975) Q = 0.1107 (16) Å and Θ = 271.8 (8)° and its least-squares plane makes a dihedral angle of 62.18 (9)° with the benzene ring (C3–C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing, Fig. 2, the molecules are linked via intermolecular O3—H1O3···O1i, O2—H1O2···O1i, N2—H1N2···O4ii and N1—H1N1···O4iii hydrogen bonds (Table 1) into one-dimensional chains along the [010] direction.

Related literature top

For general background to and the properties of ninhydrinurea derivatives, see: Caputo et al. (1987); Kaupp et al. (2002); Sarra & Stephani (2000). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of ninhydrin (1.78 g) and urea (0.60 g) in molar ratio 1:1 were well dissolved in acetic acid and then heated over a water bath for 15 minutes. The reaction mixture was dried on rotavapor at low pressure to give the solid product which was then crystallized with alcohol-chloroform (1:1 v/v) mixture to give the colourless crystals of title compound (yield 100%, m.p. 490-493 K). IR (KBr): νmax 3556, 3500 (N-H), 3312 (OH), 3175, 1727, 1682, 1605, 1429, 1340, 1296, 1218, 1179, 1113, 933, 742, 659. IR spectrum was taken on Shimadzu IR-408 Perkin Elmer 1800 (FTIR). The melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected.

Refinement top

All H atoms were located in a difference Fourier map and refined freely [O—H = 0.89 (3)–0.94 (3) Å, N—H = 0.83 (2)–0.86 (2) Å, C—H = 0.96 (2)–1.01 (2) Å]. The highest residual electron density peak is located at 0.77 Å from C9 and the deepest hole is located at 0.68 Å from C1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3a,8a-Dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione top
Crystal data top
C10H8N2O4Z = 2
Mr = 220.18F(000) = 228
Triclinic, P1Dx = 1.598 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7914 (2) ÅCell parameters from 2749 reflections
b = 7.3201 (2) Åθ = 3.1–27.6°
c = 9.5006 (3) ŵ = 0.13 mm1
α = 94.258 (1)°T = 296 K
β = 102.773 (1)°Plate, colourless
γ = 93.725 (1)°0.39 × 0.15 × 0.05 mm
V = 457.74 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2081 independent reflections
Radiation source: fine-focus sealed tube1634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.952, Tmax = 0.994k = 99
6684 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1396P]
where P = (Fo2 + 2Fc2)/3
2081 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H8N2O4γ = 93.725 (1)°
Mr = 220.18V = 457.74 (2) Å3
Triclinic, P1Z = 2
a = 6.7914 (2) ÅMo Kα radiation
b = 7.3201 (2) ŵ = 0.13 mm1
c = 9.5006 (3) ÅT = 296 K
α = 94.258 (1)°0.39 × 0.15 × 0.05 mm
β = 102.773 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2081 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1634 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.994Rint = 0.022
6684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
2081 reflectionsΔρmin = 0.23 e Å3
177 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.26218 (17)0.50614 (16)0.93570 (12)0.0382 (3)
O20.73914 (19)0.13075 (18)0.94567 (13)0.0394 (3)
O30.59082 (18)0.39814 (17)0.75936 (14)0.0376 (3)
O40.8536 (2)0.15340 (16)0.77260 (14)0.0464 (4)
N10.9431 (2)0.46753 (19)0.78463 (15)0.0345 (3)
N21.0569 (2)0.23428 (18)0.90164 (15)0.0323 (3)
C11.1014 (2)0.4122 (2)0.87930 (16)0.0294 (3)
C20.7722 (2)0.3301 (2)0.74365 (16)0.0284 (3)
C30.7435 (2)0.2416 (2)0.59059 (16)0.0279 (3)
C40.6895 (3)0.3254 (3)0.46259 (18)0.0371 (4)
C50.6634 (3)0.2169 (3)0.33296 (19)0.0431 (5)
C60.6904 (3)0.0303 (3)0.32948 (19)0.0424 (4)
C70.7470 (3)0.0527 (2)0.45616 (18)0.0358 (4)
C80.7735 (2)0.0553 (2)0.58705 (17)0.0290 (3)
C90.8272 (2)0.0003 (2)0.73466 (17)0.0303 (4)
C100.8466 (2)0.1716 (2)0.84121 (16)0.0286 (3)
H4A0.672 (3)0.461 (3)0.467 (2)0.048 (5)*
H5A0.617 (3)0.274 (3)0.245 (2)0.056 (6)*
H6A0.670 (3)0.043 (3)0.237 (2)0.059 (6)*
H7A0.764 (3)0.183 (3)0.455 (2)0.048 (6)*
H1O30.605 (4)0.440 (3)0.852 (3)0.070 (7)*
H1O20.735 (4)0.242 (4)1.002 (3)0.089 (9)*
H1N21.128 (3)0.188 (3)0.970 (2)0.041 (5)*
H1N10.935 (3)0.580 (3)0.765 (2)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (7)0.0379 (7)0.0335 (6)0.0069 (5)0.0049 (5)0.0023 (5)
O20.0501 (8)0.0369 (7)0.0315 (6)0.0046 (5)0.0115 (5)0.0064 (5)
O30.0399 (7)0.0384 (7)0.0335 (7)0.0137 (5)0.0045 (5)0.0005 (5)
O40.0613 (9)0.0239 (6)0.0474 (8)0.0061 (5)0.0038 (6)0.0071 (5)
N10.0422 (8)0.0218 (7)0.0354 (8)0.0001 (6)0.0006 (6)0.0058 (6)
N20.0358 (8)0.0279 (7)0.0283 (7)0.0019 (6)0.0040 (6)0.0056 (5)
C10.0363 (8)0.0285 (8)0.0225 (7)0.0006 (6)0.0066 (6)0.0014 (6)
C20.0340 (8)0.0225 (7)0.0272 (8)0.0045 (6)0.0028 (6)0.0037 (6)
C30.0291 (8)0.0284 (8)0.0257 (7)0.0028 (6)0.0040 (6)0.0045 (6)
C40.0429 (10)0.0378 (9)0.0313 (9)0.0058 (7)0.0063 (7)0.0108 (7)
C50.0442 (10)0.0599 (12)0.0259 (9)0.0052 (9)0.0068 (7)0.0112 (8)
C60.0365 (10)0.0602 (12)0.0286 (9)0.0014 (8)0.0073 (7)0.0056 (8)
C70.0327 (9)0.0353 (9)0.0367 (9)0.0032 (7)0.0056 (7)0.0060 (7)
C80.0283 (8)0.0277 (8)0.0290 (8)0.0018 (6)0.0027 (6)0.0021 (6)
C90.0317 (8)0.0230 (7)0.0329 (8)0.0018 (6)0.0001 (6)0.0036 (6)
C100.0341 (8)0.0246 (7)0.0250 (7)0.0021 (6)0.0015 (6)0.0050 (6)
Geometric parameters (Å, º) top
O1—C11.2415 (18)C2—C101.578 (2)
O2—C101.3939 (19)C3—C41.390 (2)
O2—H1O20.94 (3)C3—C81.391 (2)
O3—C21.392 (2)C4—C51.385 (3)
O3—H1O30.89 (3)C4—H4A1.01 (2)
O4—C91.2145 (18)C5—C61.388 (3)
N1—C11.346 (2)C5—H5A0.96 (2)
N1—C21.4496 (19)C6—C71.378 (3)
N1—H1N10.86 (2)C6—H6A0.97 (2)
N2—C11.360 (2)C7—C81.393 (2)
N2—C101.447 (2)C7—H7A0.96 (2)
N2—H1N20.83 (2)C8—C91.464 (2)
C2—C31.513 (2)C9—C101.535 (2)
C10—O2—H1O2107.1 (16)C3—C4—H4A119.6 (11)
C2—O3—H1O3108.0 (16)C4—C5—C6121.62 (16)
C1—N1—C2113.31 (13)C4—C5—H5A117.3 (13)
C1—N1—H1N1122.8 (14)C6—C5—H5A120.9 (13)
C2—N1—H1N1122.7 (14)C7—C6—C5120.68 (17)
C1—N2—C10112.65 (13)C7—C6—H6A119.2 (13)
C1—N2—H1N2119.6 (13)C5—C6—H6A120.1 (13)
C10—N2—H1N2122.8 (13)C6—C7—C8118.12 (17)
O1—C1—N1126.05 (15)C6—C7—H7A121.2 (12)
O1—C1—N2125.48 (15)C8—C7—H7A120.6 (12)
N1—C1—N2108.47 (14)C3—C8—C7121.22 (15)
O3—C2—N1112.93 (13)C3—C8—C9110.13 (14)
O3—C2—C3108.64 (12)C7—C8—C9128.63 (15)
N1—C2—C3113.22 (13)O4—C9—C8128.27 (15)
O3—C2—C10115.83 (12)O4—C9—C10123.41 (14)
N1—C2—C10102.17 (12)C8—C9—C10108.32 (12)
C3—C2—C10103.71 (12)O2—C10—N2113.44 (12)
C4—C3—C8120.46 (15)O2—C10—C9107.94 (12)
C4—C3—C2127.23 (15)N2—C10—C9111.16 (13)
C8—C3—C2112.30 (13)O2—C10—C2116.95 (13)
C5—C4—C3117.90 (17)N2—C10—C2102.00 (11)
C5—C4—H4A122.5 (11)C9—C10—C2104.99 (12)
C2—N1—C1—O1176.86 (15)C6—C7—C8—C9178.21 (15)
C2—N1—C1—N23.96 (19)C3—C8—C9—O4175.78 (16)
C10—N2—C1—O1170.05 (15)C7—C8—C9—O42.4 (3)
C10—N2—C1—N110.77 (19)C3—C8—C9—C104.17 (17)
C1—N1—C2—O3128.62 (15)C7—C8—C9—C10177.62 (15)
C1—N1—C2—C3107.37 (15)C1—N2—C10—O2114.40 (15)
C1—N1—C2—C103.51 (18)C1—N2—C10—C9123.74 (14)
O3—C2—C3—C460.0 (2)C1—N2—C10—C212.28 (17)
N1—C2—C3—C466.3 (2)O4—C9—C10—O247.5 (2)
C10—C2—C3—C4176.23 (15)C8—C9—C10—O2132.48 (13)
O3—C2—C3—C8118.71 (14)O4—C9—C10—N277.5 (2)
N1—C2—C3—C8114.97 (15)C8—C9—C10—N2102.51 (14)
C10—C2—C3—C85.04 (17)O4—C9—C10—C2172.92 (15)
C8—C3—C4—C51.1 (2)C8—C9—C10—C27.03 (16)
C2—C3—C4—C5177.49 (16)O3—C2—C10—O27.76 (19)
C3—C4—C5—C60.2 (3)N1—C2—C10—O2115.42 (14)
C4—C5—C6—C70.8 (3)C3—C2—C10—O2126.69 (13)
C5—C6—C7—C80.8 (3)O3—C2—C10—N2132.12 (13)
C4—C3—C8—C71.2 (2)N1—C2—C10—N28.94 (15)
C2—C3—C8—C7177.66 (14)C3—C2—C10—N2108.95 (13)
C4—C3—C8—C9179.53 (14)O3—C2—C10—C9111.83 (14)
C2—C3—C8—C90.71 (18)N1—C2—C10—C9124.99 (13)
C6—C7—C8—C30.2 (2)C3—C2—C10—C97.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.89 (3)2.02 (3)2.8653 (17)158 (2)
O2—H1O2···O1i0.95 (3)1.89 (3)2.8103 (17)163 (2)
N2—H1N2···O4ii0.83 (2)2.454 (19)3.1282 (19)139.3 (18)
N1—H1N1···O4iii0.86 (2)2.06 (2)2.8841 (18)159.4 (19)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2O4
Mr220.18
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.7914 (2), 7.3201 (2), 9.5006 (3)
α, β, γ (°)94.258 (1), 102.773 (1), 93.725 (1)
V3)457.74 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.39 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.952, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6684, 2081, 1634
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections2081
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.89 (3)2.02 (3)2.8653 (17)158 (2)
O2—H1O2···O1i0.95 (3)1.89 (3)2.8103 (17)163 (2)
N2—H1N2···O4ii0.83 (2)2.454 (19)3.1282 (19)139.3 (18)
N1—H1N1···O4iii0.86 (2)2.06 (2)2.8841 (18)159.4 (19)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaputo, R., Ferreri, C., Palumbo, G., Adovasio, V. & Nardelli, M. (1987). Gazz. Chim. Ital. 117, 731-738.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKaupp, G., Naimi-Jamal, M. R. & Schmeyers, J. (2002). Chem. Eur. J. 8, 594–600.  CrossRef PubMed CAS Google Scholar
First citationSarra, J. D. & Stephani, R. A. (2000). Med. Chem. Res. 10, 81–91.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds