organic compounds
3a,8a-Dihydroxy-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazole-2,8-dione
aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title molecule, C10H8N2O4, the imidazolidine ring adopts a twisted conformation. In the crystal, the molecules are linked via a pair of bifurcated intermolecular O—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are further linked via N—H⋯O hydrogen bonds into a tape along the b axis.
Related literature
For general background to and the properties of ninhydrinurea derivatives, see: Caputo et al. (1987); Kaupp et al. (2002); Sarra & Stephani (2000). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811019039/is2712sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019039/is2712Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811019039/is2712Isup3.cml
A mixture of ninhydrin (1.78 g) and urea (0.60 g) in molar ratio 1:1 were well dissolved in acetic acid and then heated over a water bath for 15 minutes. The reaction mixture was dried on rotavapor at low pressure to give the solid product which was then crystallized with alcohol-chloroform (1:1 v/v) mixture to give the colourless crystals of title compound (yield 100%, m.p. 490-493 K). IR (KBr): νmax 3556, 3500 (N-H), 3312 (OH), 3175, 1727, 1682, 1605, 1429, 1340, 1296, 1218, 1179, 1113, 933, 742, 659. IR spectrum was taken on Shimadzu IR-408 Perkin Elmer 1800 (FTIR). The melting point was taken on Thermo Fisher digital melting point apparatus of IA9000 series and is uncorrected.
All H atoms were located in a difference Fourier map and refined freely [O—H = 0.89 (3)–0.94 (3) Å, N—H = 0.83 (2)–0.86 (2) Å, C—H = 0.96 (2)–1.01 (2) Å]. The highest residual electron density peak is located at 0.77 Å from C9 and the deepest hole is located at 0.68 Å from C1.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. |
C10H8N2O4 | Z = 2 |
Mr = 220.18 | F(000) = 228 |
Triclinic, P1 | Dx = 1.598 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7914 (2) Å | Cell parameters from 2749 reflections |
b = 7.3201 (2) Å | θ = 3.1–27.6° |
c = 9.5006 (3) Å | µ = 0.13 mm−1 |
α = 94.258 (1)° | T = 296 K |
β = 102.773 (1)° | Plate, colourless |
γ = 93.725 (1)° | 0.39 × 0.15 × 0.05 mm |
V = 457.74 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 2081 independent reflections |
Radiation source: fine-focus sealed tube | 1634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.952, Tmax = 0.994 | k = −9→9 |
6684 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1396P] where P = (Fo2 + 2Fc2)/3 |
2081 reflections | (Δ/σ)max = 0.001 |
177 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C10H8N2O4 | γ = 93.725 (1)° |
Mr = 220.18 | V = 457.74 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7914 (2) Å | Mo Kα radiation |
b = 7.3201 (2) Å | µ = 0.13 mm−1 |
c = 9.5006 (3) Å | T = 296 K |
α = 94.258 (1)° | 0.39 × 0.15 × 0.05 mm |
β = 102.773 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2081 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1634 reflections with I > 2σ(I) |
Tmin = 0.952, Tmax = 0.994 | Rint = 0.022 |
6684 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.25 e Å−3 |
2081 reflections | Δρmin = −0.23 e Å−3 |
177 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.26218 (17) | 0.50614 (16) | 0.93570 (12) | 0.0382 (3) | |
O2 | 0.73914 (19) | 0.13075 (18) | 0.94567 (13) | 0.0394 (3) | |
O3 | 0.59082 (18) | 0.39814 (17) | 0.75936 (14) | 0.0376 (3) | |
O4 | 0.8536 (2) | −0.15340 (16) | 0.77260 (14) | 0.0464 (4) | |
N1 | 0.9431 (2) | 0.46753 (19) | 0.78463 (15) | 0.0345 (3) | |
N2 | 1.0569 (2) | 0.23428 (18) | 0.90164 (15) | 0.0323 (3) | |
C1 | 1.1014 (2) | 0.4122 (2) | 0.87930 (16) | 0.0294 (3) | |
C2 | 0.7722 (2) | 0.3301 (2) | 0.74365 (16) | 0.0284 (3) | |
C3 | 0.7435 (2) | 0.2416 (2) | 0.59059 (16) | 0.0279 (3) | |
C4 | 0.6895 (3) | 0.3254 (3) | 0.46259 (18) | 0.0371 (4) | |
C5 | 0.6634 (3) | 0.2169 (3) | 0.33296 (19) | 0.0431 (5) | |
C6 | 0.6904 (3) | 0.0303 (3) | 0.32948 (19) | 0.0424 (4) | |
C7 | 0.7470 (3) | −0.0527 (2) | 0.45616 (18) | 0.0358 (4) | |
C8 | 0.7735 (2) | 0.0553 (2) | 0.58705 (17) | 0.0290 (3) | |
C9 | 0.8272 (2) | −0.0003 (2) | 0.73466 (17) | 0.0303 (4) | |
C10 | 0.8466 (2) | 0.1716 (2) | 0.84121 (16) | 0.0286 (3) | |
H4A | 0.672 (3) | 0.461 (3) | 0.467 (2) | 0.048 (5)* | |
H5A | 0.617 (3) | 0.274 (3) | 0.245 (2) | 0.056 (6)* | |
H6A | 0.670 (3) | −0.043 (3) | 0.237 (2) | 0.059 (6)* | |
H7A | 0.764 (3) | −0.183 (3) | 0.455 (2) | 0.048 (6)* | |
H1O3 | 0.605 (4) | 0.440 (3) | 0.852 (3) | 0.070 (7)* | |
H1O2 | 0.735 (4) | 0.242 (4) | 1.002 (3) | 0.089 (9)* | |
H1N2 | 1.128 (3) | 0.188 (3) | 0.970 (2) | 0.041 (5)* | |
H1N1 | 0.935 (3) | 0.580 (3) | 0.765 (2) | 0.049 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0395 (7) | 0.0379 (7) | 0.0335 (6) | −0.0069 (5) | 0.0049 (5) | −0.0023 (5) |
O2 | 0.0501 (8) | 0.0369 (7) | 0.0315 (6) | −0.0046 (5) | 0.0115 (5) | 0.0064 (5) |
O3 | 0.0399 (7) | 0.0384 (7) | 0.0335 (7) | 0.0137 (5) | 0.0045 (5) | −0.0005 (5) |
O4 | 0.0613 (9) | 0.0239 (6) | 0.0474 (8) | 0.0061 (5) | −0.0038 (6) | 0.0071 (5) |
N1 | 0.0422 (8) | 0.0218 (7) | 0.0354 (8) | 0.0001 (6) | −0.0006 (6) | 0.0058 (6) |
N2 | 0.0358 (8) | 0.0279 (7) | 0.0283 (7) | 0.0019 (6) | −0.0040 (6) | 0.0056 (5) |
C1 | 0.0363 (8) | 0.0285 (8) | 0.0225 (7) | 0.0006 (6) | 0.0066 (6) | −0.0014 (6) |
C2 | 0.0340 (8) | 0.0225 (7) | 0.0272 (8) | 0.0045 (6) | 0.0028 (6) | 0.0037 (6) |
C3 | 0.0291 (8) | 0.0284 (8) | 0.0257 (7) | 0.0028 (6) | 0.0040 (6) | 0.0045 (6) |
C4 | 0.0429 (10) | 0.0378 (9) | 0.0313 (9) | 0.0058 (7) | 0.0063 (7) | 0.0108 (7) |
C5 | 0.0442 (10) | 0.0599 (12) | 0.0259 (9) | 0.0052 (9) | 0.0068 (7) | 0.0112 (8) |
C6 | 0.0365 (10) | 0.0602 (12) | 0.0286 (9) | 0.0014 (8) | 0.0073 (7) | −0.0056 (8) |
C7 | 0.0327 (9) | 0.0353 (9) | 0.0367 (9) | 0.0032 (7) | 0.0056 (7) | −0.0060 (7) |
C8 | 0.0283 (8) | 0.0277 (8) | 0.0290 (8) | 0.0018 (6) | 0.0027 (6) | 0.0021 (6) |
C9 | 0.0317 (8) | 0.0230 (7) | 0.0329 (8) | 0.0018 (6) | −0.0001 (6) | 0.0036 (6) |
C10 | 0.0341 (8) | 0.0246 (7) | 0.0250 (7) | 0.0021 (6) | 0.0015 (6) | 0.0050 (6) |
O1—C1 | 1.2415 (18) | C2—C10 | 1.578 (2) |
O2—C10 | 1.3939 (19) | C3—C4 | 1.390 (2) |
O2—H1O2 | 0.94 (3) | C3—C8 | 1.391 (2) |
O3—C2 | 1.392 (2) | C4—C5 | 1.385 (3) |
O3—H1O3 | 0.89 (3) | C4—H4A | 1.01 (2) |
O4—C9 | 1.2145 (18) | C5—C6 | 1.388 (3) |
N1—C1 | 1.346 (2) | C5—H5A | 0.96 (2) |
N1—C2 | 1.4496 (19) | C6—C7 | 1.378 (3) |
N1—H1N1 | 0.86 (2) | C6—H6A | 0.97 (2) |
N2—C1 | 1.360 (2) | C7—C8 | 1.393 (2) |
N2—C10 | 1.447 (2) | C7—H7A | 0.96 (2) |
N2—H1N2 | 0.83 (2) | C8—C9 | 1.464 (2) |
C2—C3 | 1.513 (2) | C9—C10 | 1.535 (2) |
C10—O2—H1O2 | 107.1 (16) | C3—C4—H4A | 119.6 (11) |
C2—O3—H1O3 | 108.0 (16) | C4—C5—C6 | 121.62 (16) |
C1—N1—C2 | 113.31 (13) | C4—C5—H5A | 117.3 (13) |
C1—N1—H1N1 | 122.8 (14) | C6—C5—H5A | 120.9 (13) |
C2—N1—H1N1 | 122.7 (14) | C7—C6—C5 | 120.68 (17) |
C1—N2—C10 | 112.65 (13) | C7—C6—H6A | 119.2 (13) |
C1—N2—H1N2 | 119.6 (13) | C5—C6—H6A | 120.1 (13) |
C10—N2—H1N2 | 122.8 (13) | C6—C7—C8 | 118.12 (17) |
O1—C1—N1 | 126.05 (15) | C6—C7—H7A | 121.2 (12) |
O1—C1—N2 | 125.48 (15) | C8—C7—H7A | 120.6 (12) |
N1—C1—N2 | 108.47 (14) | C3—C8—C7 | 121.22 (15) |
O3—C2—N1 | 112.93 (13) | C3—C8—C9 | 110.13 (14) |
O3—C2—C3 | 108.64 (12) | C7—C8—C9 | 128.63 (15) |
N1—C2—C3 | 113.22 (13) | O4—C9—C8 | 128.27 (15) |
O3—C2—C10 | 115.83 (12) | O4—C9—C10 | 123.41 (14) |
N1—C2—C10 | 102.17 (12) | C8—C9—C10 | 108.32 (12) |
C3—C2—C10 | 103.71 (12) | O2—C10—N2 | 113.44 (12) |
C4—C3—C8 | 120.46 (15) | O2—C10—C9 | 107.94 (12) |
C4—C3—C2 | 127.23 (15) | N2—C10—C9 | 111.16 (13) |
C8—C3—C2 | 112.30 (13) | O2—C10—C2 | 116.95 (13) |
C5—C4—C3 | 117.90 (17) | N2—C10—C2 | 102.00 (11) |
C5—C4—H4A | 122.5 (11) | C9—C10—C2 | 104.99 (12) |
C2—N1—C1—O1 | −176.86 (15) | C6—C7—C8—C9 | 178.21 (15) |
C2—N1—C1—N2 | 3.96 (19) | C3—C8—C9—O4 | 175.78 (16) |
C10—N2—C1—O1 | 170.05 (15) | C7—C8—C9—O4 | −2.4 (3) |
C10—N2—C1—N1 | −10.77 (19) | C3—C8—C9—C10 | −4.17 (17) |
C1—N1—C2—O3 | 128.62 (15) | C7—C8—C9—C10 | 177.62 (15) |
C1—N1—C2—C3 | −107.37 (15) | C1—N2—C10—O2 | −114.40 (15) |
C1—N1—C2—C10 | 3.51 (18) | C1—N2—C10—C9 | 123.74 (14) |
O3—C2—C3—C4 | 60.0 (2) | C1—N2—C10—C2 | 12.28 (17) |
N1—C2—C3—C4 | −66.3 (2) | O4—C9—C10—O2 | −47.5 (2) |
C10—C2—C3—C4 | −176.23 (15) | C8—C9—C10—O2 | 132.48 (13) |
O3—C2—C3—C8 | −118.71 (14) | O4—C9—C10—N2 | 77.5 (2) |
N1—C2—C3—C8 | 114.97 (15) | C8—C9—C10—N2 | −102.51 (14) |
C10—C2—C3—C8 | 5.04 (17) | O4—C9—C10—C2 | −172.92 (15) |
C8—C3—C4—C5 | 1.1 (2) | C8—C9—C10—C2 | 7.03 (16) |
C2—C3—C4—C5 | −177.49 (16) | O3—C2—C10—O2 | −7.76 (19) |
C3—C4—C5—C6 | −0.2 (3) | N1—C2—C10—O2 | 115.42 (14) |
C4—C5—C6—C7 | −0.8 (3) | C3—C2—C10—O2 | −126.69 (13) |
C5—C6—C7—C8 | 0.8 (3) | O3—C2—C10—N2 | −132.12 (13) |
C4—C3—C8—C7 | −1.2 (2) | N1—C2—C10—N2 | −8.94 (15) |
C2—C3—C8—C7 | 177.66 (14) | C3—C2—C10—N2 | 108.95 (13) |
C4—C3—C8—C9 | −179.53 (14) | O3—C2—C10—C9 | 111.83 (14) |
C2—C3—C8—C9 | −0.71 (18) | N1—C2—C10—C9 | −124.99 (13) |
C6—C7—C8—C3 | 0.2 (2) | C3—C2—C10—C9 | −7.09 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O1i | 0.89 (3) | 2.02 (3) | 2.8653 (17) | 158 (2) |
O2—H1O2···O1i | 0.95 (3) | 1.89 (3) | 2.8103 (17) | 163 (2) |
N2—H1N2···O4ii | 0.83 (2) | 2.454 (19) | 3.1282 (19) | 139.3 (18) |
N1—H1N1···O4iii | 0.86 (2) | 2.06 (2) | 2.8841 (18) | 159.4 (19) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H8N2O4 |
Mr | 220.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.7914 (2), 7.3201 (2), 9.5006 (3) |
α, β, γ (°) | 94.258 (1), 102.773 (1), 93.725 (1) |
V (Å3) | 457.74 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.39 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.952, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6684, 2081, 1634 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.110, 1.05 |
No. of reflections | 2081 |
No. of parameters | 177 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.23 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O1i | 0.89 (3) | 2.02 (3) | 2.8653 (17) | 158 (2) |
O2—H1O2···O1i | 0.95 (3) | 1.89 (3) | 2.8103 (17) | 163 (2) |
N2—H1N2···O4ii | 0.83 (2) | 2.454 (19) | 3.1282 (19) | 139.3 (18) |
N1—H1N1···O4iii | 0.86 (2) | 2.06 (2) | 2.8841 (18) | 159.4 (19) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2; (iii) x, y+1, z. |
Acknowledgements
HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caputo, R., Ferreri, C., Palumbo, G., Adovasio, V. & Nardelli, M. (1987). Gazz. Chim. Ital. 117, 731-738. CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Kaupp, G., Naimi-Jamal, M. R. & Schmeyers, J. (2002). Chem. Eur. J. 8, 594–600. CrossRef PubMed CAS Google Scholar
Sarra, J. D. & Stephani, R. A. (2000). Med. Chem. Res. 10, 81–91. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound ninhydrinurea (Caputo et al., 1987; Kaupp et al., 2002; Sarra & Stephani, 2000) has been synthesized by a new route.
In the title compound, Fig. 1, the imidazolidine ring (N1/N2/C1/C2/C10) is twisted about the N2—C10 bond with puckering parameters (Cremer & Pople, 1975) Q = 0.1107 (16) Å and Θ = 271.8 (8)° and its least-squares plane makes a dihedral angle of 62.18 (9)° with the benzene ring (C3–C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges.
In the crystal packing, Fig. 2, the molecules are linked via intermolecular O3—H1O3···O1i, O2—H1O2···O1i, N2—H1N2···O4ii and N1—H1N1···O4iii hydrogen bonds (Table 1) into one-dimensional chains along the [010] direction.