organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3S)-Methyl 6,7-dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­iso­quinoline-3-carboxyl­ate

aSchool of Pharmacy and Pharmacology, University of KwaZulu Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 15 May 2011; accepted 17 May 2011; online 25 May 2011)

In the title compound, C19H21NO4, an organocatalyst with a tetra­hydro­isoquinoline backbone, the heterocyclic ring assumes a half-boat conformation. The dihedral angle between the aromatic rings is 82.93 (8)°. In the crystal, mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to (10[\overline{1}]).

Related literature

For related structures, see: Naicker et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.], 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o1403.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21NO4

  • Mr = 327.37

  • Monoclinic, P 21

  • a = 9.3841 (3) Å

  • b = 6.3453 (2) Å

  • c = 14.2048 (4) Å

  • β = 94.475 (2)°

  • V = 843.25 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.90 × 0.07 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.995

  • 4184 measured reflections

  • 2275 independent reflections

  • 2138 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.05

  • 2275 reflections

  • 222 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.91 (2) 2.27 (1) 3.0918 (17) 149 (2)
C1—H1⋯O3ii 1.00 2.55 3.503 (2) 160
C19—H19B⋯O2iii 0.98 2.53 3.270 (2) 132
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x, y+1, z; (iii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009)[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a novel chiral organocatalyst containing a tetrahydroisoquinoline (TIQ) framework. We have recently reported the use of similar TIQ derivatives as organocatalysts in the Diels-Alder cycloaddition between alpha, beta-unsaturated aldehydes and cyclopentadiene (Naicker et al., 2010).

Diastereomers formed during the synthesis of the title compound were easily separated using column chromatography to yield the TIQ derivative with the stereochemistry as illustrated in Fig. 1. The absolute stereochemistry was confirmed to be S,S at the C1 and C9 positions, respectively, by proton NMR spectroscopy.

The N-containing six-membered ring assumes a half-boat conformation [Q = 0.5537 (16) Å, θ = 53.94 (16)° and ϕ = 335.3 (2)°]. This observation is similar to a related structure that we recently reported (Naicker et al., 2011). The molecules are linked through N1— H1N···O3i and C1—H1···O3ii hydrogen bonds (Table 1) into a column stacked along the b axis. The columns are further connected by C19—H19B···O2iii hydrogen bonds, forming a layer parallel to the (101) plane (Fig. 2).

Related literature top

For related structures, see: Naicker et al. (2010, 2011).

Experimental top

To a stirred solution of 1:1 methanol: methylene chloride (6.0 ml) with 4 Å molecular sieves, (S)-methyl 2-amino-3-(3,4-dimethoxyphenyl)propanoate (1.0 g, 4.2 mmol) and benzaldehdye (1.1 eq.) was added under an inert atmosphere. The reaction mixture was allowed to stir for 1.5 h. Thereafter the reaction mixture was filtered and the solvents was removed in vacuo to yield the intermediate imine which was left on a high vacuum pump to remove any residual water for 2 h. The residue was then dissolved in trifluoroacetic acid (20 ml) and refluxed for 3 h. The reaction mixture was then neutralized with a saturated sodium bicarbonate solution and extracted with ethylacetate (4 × 20 ml). The organic extracts were combined and dried over anhydrous Na2SO4 and the solvent was removed in vacuo. The crude product (diastereomers) was purified by column chromatography (50:50 EtOAc/Hexane, Rf 1/2) to afford the product 1.20 g (88%) as a white solid. Melting point 370–372 K. IR (neat): 2928, 2600, 1746, 1516, 1250, 1123, 727 cm-1 [α]20D = +15.38 (c 0.26 in CHCl3) 1H NMR (400 MHz, CDCl3) δ 7.33 – 7.11 (m, 5H), 6.57 (s, 1H), 6.10 (s, 1H), 5.02 (s, 1H), 3.79 (s, 4H), 3.70 (s, 3H), 3.52 (s, 3H), 3.01 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 172.96, 147.76, 147.41, 143.87, 130.22, 129.04, 128.59, 127.84, 126.07, 111.31, 110.56, 62.85, 56.54, 55.89, 55.84, 52.18, 32.22.

Recrystallization from ethyl acetate at room temperature afforded crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms, except H1N on N1, were placed in idealized positions and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(C). The position of H1N was located in a difference electron density map and refined with a bond length restraint of N—H = 0.95 (3) Å. With unmerged data, the Flack x parameter refines to -0.5475 with e.s.d. 0.6554, and the absolute structure cannot be determined reliably. The final refinements were performed with merged data.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial projection of the title compound, viewed along the a axis.
(1S,3S)-Methyl 6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate top
Crystal data top
C19H21NO4F(000) = 348
Mr = 327.37Dx = 1.289 Mg m3
Monoclinic, P21Melting point: 371 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.3841 (3) ÅCell parameters from 4184 reflections
b = 6.3453 (2) Åθ = 2.2–28.3°
c = 14.2048 (4) ŵ = 0.09 mm1
β = 94.475 (2)°T = 173 K
V = 843.25 (4) Å3Needle, colourless
Z = 20.90 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
2275 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.923, Tmax = 0.995k = 88
4184 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.1004P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2275 reflectionsΔρmax = 0.20 e Å3
222 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Crystal data top
C19H21NO4V = 843.25 (4) Å3
Mr = 327.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.3841 (3) ŵ = 0.09 mm1
b = 6.3453 (2) ÅT = 173 K
c = 14.2048 (4) Å0.90 × 0.07 × 0.06 mm
β = 94.475 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2138 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.995Rint = 0.010
4184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0302 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2275 reflectionsΔρmin = 0.13 e Å3
222 parameters
Special details top

Experimental. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 33 mm; combination of ϕ and ω scans of 1.0°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32761 (13)0.8193 (2)0.52227 (9)0.0421 (3)
O20.14691 (13)0.5304 (2)0.46573 (8)0.0377 (3)
O30.39059 (11)0.1210 (2)0.96117 (8)0.0372 (3)
O40.15273 (11)0.0802 (2)0.93763 (8)0.0359 (3)
N10.44475 (13)0.2219 (2)0.85516 (9)0.0286 (3)
H1N0.4969 (18)0.214 (4)0.9118 (11)0.033 (5)*
C10.45806 (15)0.4396 (3)0.82212 (10)0.0276 (3)
H10.42710.53820.87150.033*
C20.36095 (14)0.4684 (2)0.73185 (10)0.0260 (3)
C30.38575 (16)0.6398 (3)0.67243 (11)0.0303 (3)
H30.45580.74200.69210.036*
C40.30923 (16)0.6610 (3)0.58571 (11)0.0309 (3)
C50.20784 (15)0.5077 (3)0.55602 (10)0.0299 (3)
C60.17693 (14)0.3466 (3)0.61690 (10)0.0273 (3)
H60.10360.24850.59840.033*
C70.25316 (14)0.3266 (2)0.70613 (10)0.0250 (3)
C80.21706 (15)0.1462 (3)0.76978 (10)0.0274 (3)
H8A0.24460.01100.74150.033*
H8B0.11270.14330.77590.033*
C90.29613 (15)0.1715 (3)0.86760 (10)0.0259 (3)
H90.25240.29090.90110.031*
C100.28876 (15)0.0258 (3)0.92677 (10)0.0273 (3)
C110.1344 (2)0.2585 (3)0.99879 (13)0.0423 (4)
H11A0.03220.28591.00250.063*
H11B0.17880.22771.06210.063*
H11C0.17990.38290.97330.063*
C120.61296 (15)0.4843 (3)0.80537 (10)0.0291 (3)
C130.68782 (16)0.3487 (3)0.74980 (11)0.0374 (4)
H130.64190.22700.72290.045*
C140.82974 (17)0.3906 (4)0.73342 (12)0.0426 (4)
H140.87980.29800.69510.051*
C150.89763 (17)0.5663 (4)0.77280 (13)0.0431 (4)
H150.99510.59240.76310.052*
C160.82347 (18)0.7041 (3)0.82631 (13)0.0419 (4)
H160.86950.82690.85200.050*
C170.68109 (16)0.6639 (3)0.84278 (11)0.0339 (3)
H170.63070.75940.87960.041*
C180.43336 (19)0.9743 (3)0.54802 (15)0.0450 (4)
H18A0.43621.07820.49720.067*
H18B0.52700.90620.55850.067*
H18C0.40971.04500.60610.067*
C190.0553 (2)0.3649 (3)0.43094 (12)0.0480 (5)
H19A0.01730.39810.36640.072*
H19B0.02380.34980.47150.072*
H19C0.10940.23280.43080.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (6)0.0362 (7)0.0523 (7)0.0028 (6)0.0043 (5)0.0163 (6)
O20.0426 (6)0.0405 (7)0.0296 (5)0.0005 (6)0.0009 (4)0.0067 (5)
O30.0353 (6)0.0404 (7)0.0356 (6)0.0093 (6)0.0002 (4)0.0060 (5)
O40.0313 (5)0.0380 (7)0.0380 (6)0.0025 (5)0.0002 (4)0.0088 (5)
N10.0229 (6)0.0322 (7)0.0299 (6)0.0000 (5)0.0032 (5)0.0002 (6)
C10.0234 (6)0.0302 (8)0.0290 (7)0.0003 (6)0.0007 (5)0.0056 (6)
C20.0214 (6)0.0254 (7)0.0315 (7)0.0018 (6)0.0031 (5)0.0026 (6)
C30.0237 (6)0.0251 (7)0.0422 (8)0.0006 (6)0.0023 (5)0.0008 (7)
C40.0263 (6)0.0281 (8)0.0390 (8)0.0036 (6)0.0077 (6)0.0067 (7)
C50.0266 (7)0.0337 (8)0.0296 (7)0.0040 (6)0.0030 (5)0.0018 (6)
C60.0237 (6)0.0286 (7)0.0296 (7)0.0000 (6)0.0012 (5)0.0001 (6)
C70.0218 (6)0.0257 (7)0.0276 (6)0.0017 (6)0.0027 (5)0.0004 (6)
C80.0243 (6)0.0284 (7)0.0289 (7)0.0023 (6)0.0012 (5)0.0021 (6)
C90.0240 (6)0.0271 (7)0.0267 (6)0.0021 (6)0.0017 (5)0.0016 (6)
C100.0302 (7)0.0291 (8)0.0223 (6)0.0015 (6)0.0008 (5)0.0040 (6)
C110.0477 (9)0.0388 (10)0.0404 (9)0.0081 (8)0.0035 (7)0.0082 (8)
C120.0232 (6)0.0350 (8)0.0284 (7)0.0005 (6)0.0017 (5)0.0012 (6)
C130.0290 (7)0.0449 (10)0.0381 (8)0.0022 (8)0.0010 (6)0.0077 (8)
C140.0299 (7)0.0590 (12)0.0394 (8)0.0068 (8)0.0068 (6)0.0014 (9)
C150.0247 (7)0.0602 (12)0.0445 (9)0.0010 (8)0.0029 (6)0.0106 (9)
C160.0314 (8)0.0473 (11)0.0460 (9)0.0093 (8)0.0031 (7)0.0041 (9)
C170.0286 (7)0.0370 (9)0.0357 (8)0.0045 (7)0.0002 (6)0.0014 (7)
C180.0414 (9)0.0287 (9)0.0673 (12)0.0008 (8)0.0203 (8)0.0072 (9)
C190.0671 (12)0.0411 (11)0.0331 (8)0.0001 (10)0.0126 (8)0.0006 (8)
Geometric parameters (Å, º) top
O1—C41.3696 (19)C8—H8B0.9900
O1—C181.424 (2)C9—C101.512 (2)
O2—C51.3704 (18)C9—H91.0000
O2—C191.421 (2)C11—H11A0.9800
O3—C101.2017 (18)C11—H11B0.9800
O4—C101.3429 (18)C11—H11C0.9800
O4—C111.445 (2)C12—C171.392 (2)
N1—C91.4552 (18)C12—C131.394 (2)
N1—C11.467 (2)C13—C141.395 (2)
N1—H1N0.909 (14)C13—H130.9500
C1—C121.5178 (19)C14—C151.380 (3)
C1—C21.525 (2)C14—H140.9500
C1—H11.0000C15—C161.382 (3)
C2—C71.381 (2)C15—H150.9500
C2—C31.407 (2)C16—C171.398 (2)
C3—C41.383 (2)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.403 (2)C18—H18A0.9800
C5—C61.384 (2)C18—H18B0.9800
C6—C71.4118 (18)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—C81.513 (2)C19—H19B0.9800
C8—C91.5317 (19)C19—H19C0.9800
C8—H8A0.9900
C4—O1—C18117.28 (14)C8—C9—H9108.9
C5—O2—C19116.41 (13)O3—C10—O4123.84 (15)
C10—O4—C11115.40 (13)O3—C10—C9124.95 (14)
C9—N1—C1110.63 (12)O4—C10—C9111.20 (12)
C9—N1—H1N109.5 (12)O4—C11—H11A109.5
C1—N1—H1N106.5 (15)O4—C11—H11B109.5
N1—C1—C12109.42 (13)H11A—C11—H11B109.5
N1—C1—C2108.75 (12)O4—C11—H11C109.5
C12—C1—C2111.26 (12)H11A—C11—H11C109.5
N1—C1—H1109.1H11B—C11—H11C109.5
C12—C1—H1109.1C17—C12—C13119.00 (14)
C2—C1—H1109.1C17—C12—C1120.67 (14)
C7—C2—C3119.79 (13)C13—C12—C1120.31 (14)
C7—C2—C1121.43 (13)C12—C13—C14120.43 (18)
C3—C2—C1118.75 (13)C12—C13—H13119.8
C4—C3—C2120.72 (14)C14—C13—H13119.8
C4—C3—H3119.6C15—C14—C13120.18 (18)
C2—C3—H3119.6C15—C14—H14119.9
O1—C4—C3125.04 (15)C13—C14—H14119.9
O1—C4—C5115.36 (14)C14—C15—C16119.84 (16)
C3—C4—C5119.55 (14)C14—C15—H15120.1
O2—C5—C6124.75 (14)C16—C15—H15120.1
O2—C5—C4115.61 (14)C15—C16—C17120.37 (18)
C6—C5—C4119.64 (13)C15—C16—H16119.8
C5—C6—C7120.76 (14)C17—C16—H16119.8
C5—C6—H6119.6C12—C17—C16120.14 (16)
C7—C6—H6119.6C12—C17—H17119.9
C2—C7—C6119.20 (13)C16—C17—H17119.9
C2—C7—C8121.88 (12)O1—C18—H18A109.5
C6—C7—C8118.89 (13)O1—C18—H18B109.5
C7—C8—C9110.34 (12)H18A—C18—H18B109.5
C7—C8—H8A109.6O1—C18—H18C109.5
C9—C8—H8A109.6H18A—C18—H18C109.5
C7—C8—H8B109.6H18B—C18—H18C109.5
C9—C8—H8B109.6O2—C19—H19A109.5
H8A—C8—H8B108.1O2—C19—H19B109.5
N1—C9—C10109.60 (12)H19A—C19—H19B109.5
N1—C9—C8108.29 (11)O2—C19—H19C109.5
C10—C9—C8112.19 (12)H19A—C19—H19C109.5
N1—C9—H9108.9H19B—C19—H19C109.5
C10—C9—H9108.9
C9—N1—C1—C12177.34 (12)C5—C6—C7—C8179.14 (14)
C9—N1—C1—C255.63 (14)C2—C7—C8—C99.86 (19)
N1—C1—C2—C716.42 (18)C6—C7—C8—C9171.91 (13)
C12—C1—C2—C7137.00 (14)C1—N1—C9—C10163.99 (11)
N1—C1—C2—C3161.44 (13)C1—N1—C9—C873.33 (15)
C12—C1—C2—C340.86 (19)C7—C8—C9—N146.80 (16)
C7—C2—C3—C44.0 (2)C7—C8—C9—C10167.89 (11)
C1—C2—C3—C4173.89 (14)C11—O4—C10—O33.2 (2)
C18—O1—C4—C30.3 (2)C11—O4—C10—C9175.80 (13)
C18—O1—C4—C5177.71 (14)N1—C9—C10—O32.7 (2)
C2—C3—C4—O1178.59 (14)C8—C9—C10—O3123.00 (16)
C2—C3—C4—C51.2 (2)N1—C9—C10—O4178.38 (12)
C19—O2—C5—C65.8 (2)C8—C9—C10—O458.05 (15)
C19—O2—C5—C4173.61 (15)N1—C1—C12—C17130.54 (15)
O1—C4—C5—O23.6 (2)C2—C1—C12—C17109.27 (16)
C3—C4—C5—O2174.04 (14)N1—C1—C12—C1351.37 (18)
O1—C4—C5—C6177.03 (13)C2—C1—C12—C1368.82 (19)
C3—C4—C5—C65.4 (2)C17—C12—C13—C141.2 (3)
O2—C5—C6—C7175.00 (14)C1—C12—C13—C14179.29 (16)
C4—C5—C6—C74.4 (2)C12—C13—C14—C150.5 (3)
C3—C2—C7—C65.0 (2)C13—C14—C15—C161.9 (3)
C1—C2—C7—C6172.82 (13)C14—C15—C16—C171.6 (3)
C3—C2—C7—C8176.77 (13)C13—C12—C17—C161.4 (2)
C1—C2—C7—C85.4 (2)C1—C12—C17—C16179.55 (15)
C5—C6—C7—C20.9 (2)C15—C16—C17—C120.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.91 (2)2.27 (1)3.0918 (17)149 (2)
C1—H1···O3ii1.002.553.503 (2)160
C19—H19B···O2iii0.982.533.270 (2)132
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y+1, z; (iii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H21NO4
Mr327.37
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.3841 (3), 6.3453 (2), 14.2048 (4)
β (°) 94.475 (2)
V3)843.25 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.90 × 0.07 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4184, 2275, 2138
Rint0.010
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.05
No. of reflections2275
No. of parameters222
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.13

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.910 (16)2.2741 (18)3.0918 (17)149 (2)
C1—H1···O3ii1.002.553.503 (2)160
C19—H19B···O2iii0.982.533.270 (2)132
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y+1, z; (iii) x, y1/2, z+1.
 

Acknowledgements

The authors wish to thank Dr Hong Su from the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o1403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds