metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(1H-imidazole-κN3)bis­­(tri­phenyl­phosphane-κP)copper(I)

aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: sadr@azaruniv.edu

(Received 30 April 2011; accepted 11 May 2011; online 20 May 2011)

In the title complex, [CuCl(C3H4N2)(C18H15P)2], the coordination geometry around CuI is distorted tetra­hedral formed by two triphenyl­phosphane ligands, an imidazole ligand and a chloride group. An intra­molecular C—H⋯Cl inter­action occurs. The crystal packing is stabilized by inter­molecular N—H⋯Cl hydrogen bonds, which form an extended chain parallel to [010].

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the use of imidazole-derived ligands in coordination chemistry, see, for example: Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]); Sadimenko & Basson (1996[Sadimenko, A. P. & Basson, S. S. (1996). Coord. Chem. Rev. 147, 247-275.]); Pettinari (2001[Pettinari, C. (2001). Polyhedron, 20, 2755-2761.]); Hossaini Sadr et al. (2005[Hossaini Sadr, M., Jalili, A. R. & Razmi, H. Ng. S. W. (2005). Organomet. Chem. 690, 2128-2132.]); Kitajima (1992[Kitajima, N. (1992). Adv. Inorg. Chem. 39, 18-38.]); Kitajima et al. (1989[Kitajima, N., Fujisawa, K., Fujimoto, C. & Moro-Oka, Y. (1989). Chem. Lett. pp. 421-424.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C3H4N2)(C18H15P)2]

  • Mr = 691.61

  • Monoclinic, P 21 /n

  • a = 13.674 (5) Å

  • b = 12.407 (5) Å

  • c = 20.353 (5) Å

  • β = 98.956 (5)°

  • V = 3411 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 296 K

  • 0.42 × 0.41 × 0.35 mm

Data collection
  • Stoe IPDS 2T Image Plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.879, Tmax = 1.000

  • 24488 measured reflections

  • 9190 independent reflections

  • 6720 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.02

  • 9190 reflections

  • 409 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.80 (4) 2.34 (4) 3.127 (3) 171 (3)
C5—H5A⋯Cl1 0.93 2.78 3.663 (4) 160
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of copper complexes with nitrogen-containing ligands especially pyrazole and imidazole derived ligands has been attracting continuous attention due to their rich coordination properties (Trofimenko, 1993; Sadimenko et al., 1996) and show good models of the active sites of copper proteins (Pettinari, 2001; Hossaini Sadr et al., 2005; Kitajima, 1992; Kitajima et al., 1989).

The asymmetric unit of the title complex, Fig. 1, comprises one molecule of the complex. The bond lengths (Allen, et al., 1987) and angles are within the normal ranges. The geometry around CuI is that of distorted tetrahedral which is coordinated by two triphenylphosphanes, imidazole and chloro groups. The crystal packing is stabilized by the intermolecular N—H···Cl hydrogen bonds (Table 2) which makes an extended chain along the [0 1 0] direction (Fig. 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For background to the use of imidazole-derived ligands in coordination chemistry, see, for example; Trofimenko (1993); Sadimenko & Basson (1996); Pettinari (2001); Hossaini Sadr et al. (2005); Kitajima (1992); Kitajima et al. (1989).

Experimental top

PPh3 (2 mmol, 0.53 g) was added to a solution of CuCl (1 mmol, 0.09 g) and imidazole (2 mmol, 0.07 g) in dry CH3OH/CH3CN (1:1) (30 ml) and stirred for 12 h under N2 atmosphere. The filtrate of the resulting mixture was left to evaporate slowly at ambient temperature. Single crystals suitable for X-ray diffraction analysis were obtained after 4 days.

Refinement top

All hydrogen atoms were positioned geometrically with C–H = 0.93 Å and included in a riding model approximation with Uiso (H) = 1.2 Ueq (C), except the N-bound H atom which was located from the difference Fourier map and constrained to refine with the parent atom with Uiso (H) = 1.2 Ueq (N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the c-axis showing an extended chain along the b-axis. The dashed lines show the hyrogen bonding interactions.
Chloro(1H-imidazole-N)bis(triphenylphosphane)copper(I) top
Crystal data top
[CuCl(C3H4N2)(C18H15P)2]F(000) = 1432
Mr = 691.61Dx = 1.347 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 5052 reflections
a = 13.674 (5) Åθ = 1.9–29.5°
b = 12.407 (5) ŵ = 0.84 mm1
c = 20.353 (5) ÅT = 296 K
β = 98.956 (5)°Block, pale-yellow
V = 3411 (2) Å30.42 × 0.41 × 0.35 mm
Z = 4
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
9190 independent reflections
Radiation source: fine-focus sealed tube6720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.7°
ω scansh = 1818
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
k = 1615
Tmin = 0.879, Tmax = 1.000l = 2727
24488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.4442P]
where P = (Fo2 + 2Fc2)/3
9190 reflections(Δ/σ)max = 0.002
409 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[CuCl(C3H4N2)(C18H15P)2]V = 3411 (2) Å3
Mr = 691.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.674 (5) ŵ = 0.84 mm1
b = 12.407 (5) ÅT = 296 K
c = 20.353 (5) Å0.42 × 0.41 × 0.35 mm
β = 98.956 (5)°
Data collection top
Stoe IPDS 2T Image Plate
diffractometer
9190 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
6720 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 1.000Rint = 0.053
24488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.42 e Å3
9190 reflectionsΔρmin = 0.58 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.841807 (18)0.32155 (2)0.629310 (13)0.03820 (8)
Cl10.79523 (5)0.50608 (5)0.61438 (3)0.05424 (16)
P10.78372 (4)0.23056 (5)0.53392 (3)0.03740 (12)
P21.00039 (4)0.31129 (5)0.68142 (3)0.03835 (12)
N10.75543 (15)0.27483 (17)0.69960 (10)0.0480 (5)
N20.6971 (2)0.1876 (2)0.77835 (12)0.0645 (7)
H20.692 (2)0.141 (3)0.8046 (17)0.077*
C10.6682 (2)0.3194 (2)0.70903 (15)0.0613 (7)
H1A0.63840.37830.68580.074*
C20.6310 (3)0.2653 (3)0.75720 (18)0.0791 (10)
H2A0.57160.27900.77260.095*
C30.7705 (2)0.1959 (2)0.74322 (13)0.0551 (6)
H3A0.82600.15150.74870.066*
C40.64932 (15)0.2413 (2)0.50960 (12)0.0442 (5)
C50.6049 (2)0.3378 (3)0.5176 (2)0.0946 (14)
H5A0.64220.39530.53720.114*
C60.5037 (3)0.3503 (3)0.4965 (3)0.139 (2)
H6A0.47470.41740.50020.167*
C70.4468 (2)0.2669 (3)0.4707 (2)0.0949 (13)
H7A0.37910.27610.45710.114*
C80.4895 (2)0.1700 (3)0.4650 (2)0.0797 (10)
H8A0.45080.11160.44840.096*
C90.59015 (19)0.1571 (3)0.48383 (17)0.0677 (8)
H9A0.61860.09000.47900.081*
C100.80015 (15)0.08445 (19)0.54037 (12)0.0437 (5)
C110.7684 (2)0.0338 (2)0.59392 (16)0.0611 (7)
H11A0.74320.07530.62550.073*
C120.7731 (2)0.0765 (2)0.60157 (18)0.0713 (8)
H12A0.75000.10900.63740.086*
C130.8120 (2)0.1378 (3)0.5563 (2)0.0774 (9)
H13A0.81550.21230.56120.093*
C140.8456 (3)0.0897 (3)0.5040 (2)0.0855 (10)
H14A0.87250.13170.47350.103*
C150.8403 (2)0.0216 (2)0.49573 (16)0.0667 (8)
H15A0.86390.05350.45990.080*
C160.83088 (15)0.26438 (18)0.45733 (11)0.0408 (5)
C170.7717 (2)0.2776 (3)0.39636 (13)0.0675 (8)
H17A0.70400.26510.39240.081*
C180.8118 (2)0.3093 (3)0.34108 (15)0.0787 (10)
H18A0.77060.31870.30060.094*
C190.9107 (2)0.3267 (2)0.34536 (15)0.0645 (7)
H19A0.93710.34750.30790.077*
C200.9710 (2)0.3138 (2)0.40473 (16)0.0634 (7)
H20A1.03870.32600.40780.076*
C210.93172 (17)0.2824 (2)0.46077 (13)0.0519 (6)
H21A0.97350.27330.50100.062*
C221.09967 (15)0.33598 (18)0.63312 (11)0.0399 (5)
C231.08348 (18)0.4148 (2)0.58503 (12)0.0495 (5)
H23A1.02280.45020.57780.059*
C241.1553 (2)0.4422 (2)0.54744 (15)0.0617 (7)
H24A1.14290.49560.51510.074*
C251.2447 (2)0.3910 (2)0.55775 (15)0.0637 (7)
H25A1.29310.40910.53220.076*
C261.26349 (19)0.3128 (3)0.60565 (16)0.0650 (8)
H26A1.32480.27870.61270.078*
C271.19130 (18)0.2841 (2)0.64382 (14)0.0533 (6)
H27A1.20410.23080.67620.064*
C281.03301 (17)0.40460 (19)0.75114 (11)0.0443 (5)
C291.13038 (19)0.4304 (2)0.77678 (14)0.0593 (7)
H29A1.18200.39880.75880.071*
C301.1511 (2)0.5028 (3)0.82877 (15)0.0708 (8)
H30A1.21650.51870.84600.085*
C311.0763 (3)0.5510 (3)0.85505 (15)0.0723 (9)
H31A1.09070.59910.89030.087*
C320.9796 (3)0.5282 (3)0.82932 (16)0.0743 (9)
H32A0.92870.56180.84680.089*
C330.9575 (2)0.4556 (2)0.77755 (13)0.0593 (7)
H33A0.89180.44080.76040.071*
C341.02986 (16)0.1780 (2)0.71692 (13)0.0484 (5)
C351.0459 (2)0.1579 (3)0.78493 (16)0.0744 (9)
H35A1.04390.21380.81520.089*
C361.0649 (3)0.0526 (4)0.8071 (2)0.1134 (17)
H36A1.07570.03830.85250.136*
C371.0679 (3)0.0304 (3)0.7627 (3)0.1120 (17)
H37A1.08270.09990.77840.134*
C381.0494 (3)0.0118 (3)0.6959 (2)0.0887 (11)
H38A1.04990.06840.66600.106*
C391.0300 (2)0.0912 (2)0.67346 (17)0.0652 (7)
H39A1.01660.10360.62790.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03717 (13)0.04272 (15)0.03490 (14)0.00243 (11)0.00620 (10)0.00078 (12)
Cl10.0774 (4)0.0389 (3)0.0486 (3)0.0017 (3)0.0166 (3)0.0012 (3)
P10.0326 (2)0.0410 (3)0.0380 (3)0.0004 (2)0.0035 (2)0.0058 (2)
P20.0369 (3)0.0426 (3)0.0343 (3)0.0024 (2)0.0017 (2)0.0001 (2)
N10.0501 (10)0.0520 (12)0.0441 (10)0.0047 (9)0.0144 (8)0.0072 (9)
N20.0835 (17)0.0596 (15)0.0553 (14)0.0193 (13)0.0257 (12)0.0128 (12)
C10.0656 (16)0.0573 (16)0.0669 (17)0.0049 (13)0.0290 (14)0.0147 (14)
C20.083 (2)0.077 (2)0.089 (2)0.0050 (17)0.0530 (19)0.0175 (19)
C30.0586 (14)0.0569 (15)0.0504 (14)0.0049 (12)0.0105 (11)0.0117 (12)
C40.0331 (10)0.0519 (13)0.0474 (12)0.0006 (9)0.0060 (9)0.0091 (11)
C50.0411 (14)0.0577 (19)0.179 (4)0.0039 (12)0.0005 (19)0.032 (2)
C60.0459 (17)0.081 (3)0.280 (7)0.0192 (17)0.004 (3)0.054 (4)
C70.0331 (13)0.107 (3)0.141 (4)0.0036 (15)0.0012 (17)0.040 (3)
C80.0421 (13)0.088 (2)0.104 (3)0.0121 (14)0.0022 (15)0.029 (2)
C90.0454 (13)0.0660 (18)0.087 (2)0.0011 (12)0.0038 (13)0.0250 (16)
C100.0361 (10)0.0427 (12)0.0501 (13)0.0011 (9)0.0002 (9)0.0070 (10)
C110.0649 (16)0.0502 (15)0.0710 (18)0.0048 (12)0.0199 (14)0.0026 (14)
C120.0708 (18)0.0534 (17)0.089 (2)0.0063 (14)0.0104 (16)0.0109 (16)
C130.0659 (18)0.0459 (16)0.116 (3)0.0061 (13)0.0002 (18)0.0003 (18)
C140.096 (2)0.0576 (19)0.106 (3)0.0208 (17)0.026 (2)0.0171 (19)
C150.0796 (19)0.0543 (16)0.0686 (19)0.0126 (14)0.0187 (15)0.0082 (14)
C160.0374 (10)0.0439 (12)0.0408 (11)0.0020 (9)0.0048 (8)0.0045 (10)
C170.0475 (14)0.108 (2)0.0440 (14)0.0136 (15)0.0012 (11)0.0036 (16)
C180.0737 (19)0.120 (3)0.0405 (14)0.0134 (19)0.0038 (13)0.0014 (17)
C190.0763 (19)0.0666 (18)0.0568 (16)0.0084 (15)0.0296 (14)0.0046 (14)
C200.0471 (13)0.0696 (18)0.079 (2)0.0083 (12)0.0257 (13)0.0076 (16)
C210.0375 (11)0.0632 (15)0.0545 (14)0.0064 (10)0.0055 (10)0.0048 (12)
C220.0396 (10)0.0418 (12)0.0374 (11)0.0018 (8)0.0026 (8)0.0023 (9)
C230.0491 (12)0.0506 (14)0.0495 (13)0.0009 (10)0.0096 (10)0.0051 (11)
C240.0745 (18)0.0568 (16)0.0589 (16)0.0055 (14)0.0259 (14)0.0065 (13)
C250.0661 (16)0.0640 (17)0.0680 (18)0.0150 (14)0.0329 (14)0.0115 (15)
C260.0436 (13)0.0723 (19)0.082 (2)0.0039 (12)0.0178 (13)0.0128 (17)
C270.0457 (12)0.0578 (15)0.0563 (15)0.0030 (11)0.0079 (11)0.0002 (12)
C280.0492 (12)0.0478 (13)0.0345 (11)0.0056 (10)0.0019 (9)0.0005 (10)
C290.0520 (14)0.0678 (18)0.0548 (15)0.0040 (12)0.0024 (11)0.0105 (13)
C300.0719 (18)0.078 (2)0.0575 (17)0.0211 (16)0.0073 (14)0.0140 (16)
C310.101 (2)0.0676 (19)0.0473 (16)0.0198 (17)0.0103 (16)0.0161 (14)
C320.087 (2)0.080 (2)0.0597 (18)0.0072 (17)0.0245 (16)0.0227 (16)
C330.0596 (15)0.0727 (18)0.0467 (14)0.0055 (13)0.0118 (12)0.0107 (13)
C340.0382 (11)0.0486 (13)0.0548 (14)0.0080 (10)0.0037 (10)0.0095 (12)
C350.086 (2)0.069 (2)0.0578 (17)0.0182 (16)0.0219 (15)0.0199 (15)
C360.139 (4)0.086 (3)0.093 (3)0.034 (3)0.049 (3)0.044 (2)
C370.107 (3)0.058 (2)0.150 (4)0.018 (2)0.045 (3)0.039 (3)
C380.085 (2)0.0477 (17)0.128 (4)0.0038 (16)0.001 (2)0.005 (2)
C390.0669 (17)0.0502 (16)0.077 (2)0.0024 (13)0.0069 (15)0.0041 (15)
Geometric parameters (Å, º) top
Cu1—N12.0746 (18)C17—C181.382 (4)
Cu1—P22.2643 (9)C17—H17A0.9300
Cu1—P12.2792 (8)C18—C191.359 (4)
Cu1—Cl12.3831 (11)C18—H18A0.9300
P1—C161.826 (2)C19—C201.362 (4)
P1—C101.829 (3)C19—H19A0.9300
P1—C41.832 (2)C20—C211.390 (4)
P2—C221.822 (2)C20—H20A0.9300
P2—C341.824 (3)C21—H21A0.9300
P2—C281.832 (2)C22—C231.376 (3)
N1—C31.316 (3)C22—C271.395 (3)
N1—C11.355 (3)C23—C241.379 (3)
N2—C31.324 (3)C23—H23A0.9300
N2—C21.346 (4)C24—C251.365 (4)
N2—H20.80 (3)C24—H24A0.9300
C1—C21.351 (4)C25—C261.371 (4)
C1—H1A0.9300C25—H25A0.9300
C2—H2A0.9300C26—C271.394 (4)
C3—H3A0.9300C26—H26A0.9300
C4—C51.364 (4)C27—H27A0.9300
C4—C91.375 (4)C28—C331.389 (3)
C5—C61.392 (5)C28—C291.390 (3)
C5—H5A0.9300C29—C301.383 (4)
C6—C71.351 (5)C29—H29A0.9300
C6—H6A0.9300C30—C311.363 (4)
C7—C81.349 (5)C30—H30A0.9300
C7—H7A0.9300C31—C321.373 (5)
C8—C91.380 (4)C31—H31A0.9300
C8—H8A0.9300C32—C331.383 (4)
C9—H9A0.9300C32—H32A0.9300
C10—C151.375 (3)C33—H33A0.9300
C10—C111.385 (4)C34—C351.390 (4)
C11—C121.379 (4)C34—C391.394 (4)
C11—H11A0.9300C35—C361.394 (5)
C12—C131.365 (5)C35—H35A0.9300
C12—H12A0.9300C36—C371.374 (7)
C13—C141.361 (5)C36—H36A0.9300
C13—H13A0.9300C37—C381.363 (6)
C14—C151.392 (4)C37—H37A0.9300
C14—H14A0.9300C38—C391.370 (4)
C15—H15A0.9300C38—H38A0.9300
C16—C171.381 (3)C39—H39A0.9300
C16—C211.388 (3)
N1—Cu1—P2105.54 (6)C21—C16—P1118.29 (18)
N1—Cu1—P1106.78 (6)C16—C17—C18121.0 (3)
P2—Cu1—P1123.54 (2)C16—C17—H17A119.5
N1—Cu1—Cl1100.77 (6)C18—C17—H17A119.5
P2—Cu1—Cl1109.34 (3)C19—C18—C17120.6 (3)
P1—Cu1—Cl1108.45 (3)C19—C18—H18A119.7
C16—P1—C10103.49 (10)C17—C18—H18A119.7
C16—P1—C4103.02 (11)C18—C19—C20119.8 (3)
C10—P1—C4101.45 (10)C18—C19—H19A120.1
C16—P1—Cu1119.39 (8)C20—C19—H19A120.1
C10—P1—Cu1114.03 (8)C19—C20—C21120.2 (3)
C4—P1—Cu1113.32 (8)C19—C20—H20A119.9
C22—P2—C34103.23 (11)C21—C20—H20A119.9
C22—P2—C28101.52 (10)C16—C21—C20120.8 (2)
C34—P2—C28104.71 (12)C16—C21—H21A119.6
C22—P2—Cu1118.53 (8)C20—C21—H21A119.6
C34—P2—Cu1111.89 (7)C23—C22—C27118.7 (2)
C28—P2—Cu1115.29 (8)C23—C22—P2116.89 (17)
C3—N1—C1104.9 (2)C27—C22—P2124.39 (18)
C3—N1—Cu1128.80 (18)C22—C23—C24121.4 (2)
C1—N1—Cu1126.30 (17)C22—C23—H23A119.3
C3—N2—C2107.4 (2)C24—C23—H23A119.3
C3—N2—H2125 (2)C25—C24—C23119.9 (3)
C2—N2—H2128 (2)C25—C24—H24A120.1
C2—C1—N1109.9 (3)C23—C24—H24A120.1
C2—C1—H1A125.1C24—C25—C26120.2 (2)
N1—C1—H1A125.1C24—C25—H25A119.9
N2—C2—C1106.1 (3)C26—C25—H25A119.9
N2—C2—H2A127.0C25—C26—C27120.5 (3)
C1—C2—H2A127.0C25—C26—H26A119.8
N1—C3—N2111.7 (3)C27—C26—H26A119.8
N1—C3—H3A124.1C26—C27—C22119.5 (3)
N2—C3—H3A124.1C26—C27—H27A120.3
C5—C4—C9117.8 (2)C22—C27—H27A120.3
C5—C4—P1118.6 (2)C33—C28—C29118.5 (2)
C9—C4—P1123.61 (19)C33—C28—P2118.78 (18)
C4—C5—C6120.1 (3)C29—C28—P2122.68 (19)
C4—C5—H5A120.0C30—C29—C28120.4 (3)
C6—C5—H5A120.0C30—C29—H29A119.8
C7—C6—C5121.3 (3)C28—C29—H29A119.8
C7—C6—H6A119.4C31—C30—C29120.6 (3)
C5—C6—H6A119.4C31—C30—H30A119.7
C8—C7—C6119.0 (3)C29—C30—H30A119.7
C8—C7—H7A120.5C30—C31—C32119.7 (3)
C6—C7—H7A120.5C30—C31—H31A120.1
C7—C8—C9120.5 (3)C32—C31—H31A120.1
C7—C8—H8A119.8C31—C32—C33120.6 (3)
C9—C8—H8A119.8C31—C32—H32A119.7
C4—C9—C8121.3 (3)C33—C32—H32A119.7
C4—C9—H9A119.4C32—C33—C28120.2 (3)
C8—C9—H9A119.4C32—C33—H33A119.9
C15—C10—C11118.0 (3)C28—C33—H33A119.9
C15—C10—P1124.9 (2)C35—C34—C39118.6 (3)
C11—C10—P1117.12 (19)C35—C34—P2123.2 (2)
C12—C11—C10121.6 (3)C39—C34—P2118.1 (2)
C12—C11—H11A119.2C34—C35—C36118.8 (4)
C10—C11—H11A119.2C34—C35—H35A120.6
C13—C12—C11119.6 (3)C36—C35—H35A120.6
C13—C12—H12A120.2C37—C36—C35120.9 (4)
C11—C12—H12A120.2C37—C36—H36A119.5
C14—C13—C12119.9 (3)C35—C36—H36A119.5
C14—C13—H13A120.1C38—C37—C36120.5 (4)
C12—C13—H13A120.1C38—C37—H37A119.7
C13—C14—C15120.9 (3)C36—C37—H37A119.7
C13—C14—H14A119.6C37—C38—C39119.2 (4)
C15—C14—H14A119.6C37—C38—H38A120.4
C10—C15—C14120.1 (3)C39—C38—H38A120.4
C10—C15—H15A120.0C38—C39—C34121.9 (3)
C14—C15—H15A120.0C38—C39—H39A119.0
C17—C16—C21117.7 (2)C34—C39—H39A119.0
C17—C16—P1123.99 (17)
N1—Cu1—P1—C16171.86 (10)C13—C14—C15—C100.4 (6)
P2—Cu1—P1—C1665.76 (9)C10—P1—C16—C1797.1 (3)
Cl1—Cu1—P1—C1664.03 (9)C4—P1—C16—C178.2 (3)
N1—Cu1—P1—C1065.17 (10)Cu1—P1—C16—C17134.9 (2)
P2—Cu1—P1—C1057.21 (8)C10—P1—C16—C2185.7 (2)
Cl1—Cu1—P1—C10173.00 (8)C4—P1—C16—C21168.98 (19)
N1—Cu1—P1—C450.22 (11)Cu1—P1—C16—C2142.3 (2)
P2—Cu1—P1—C4172.60 (9)C21—C16—C17—C180.9 (5)
Cl1—Cu1—P1—C457.61 (9)P1—C16—C17—C18176.3 (3)
N1—Cu1—P2—C22175.02 (10)C16—C17—C18—C190.8 (6)
P1—Cu1—P2—C2252.08 (9)C17—C18—C19—C200.5 (5)
Cl1—Cu1—P2—C2277.34 (9)C18—C19—C20—C210.3 (5)
N1—Cu1—P2—C3455.07 (11)C17—C16—C21—C200.7 (4)
P1—Cu1—P2—C3467.87 (10)P1—C16—C21—C20176.7 (2)
Cl1—Cu1—P2—C34162.71 (10)C19—C20—C21—C160.4 (4)
N1—Cu1—P2—C2864.44 (11)C34—P2—C22—C23161.39 (19)
P1—Cu1—P2—C28172.63 (8)C28—P2—C22—C2390.3 (2)
Cl1—Cu1—P2—C2843.21 (9)Cu1—P2—C22—C2337.1 (2)
P2—Cu1—N1—C341.3 (2)C34—P2—C22—C2721.6 (2)
P1—Cu1—N1—C391.7 (2)C28—P2—C22—C2786.7 (2)
Cl1—Cu1—N1—C3155.1 (2)Cu1—P2—C22—C27145.94 (19)
P2—Cu1—N1—C1140.4 (2)C27—C22—C23—C240.5 (4)
P1—Cu1—N1—C186.6 (2)P2—C22—C23—C24177.6 (2)
Cl1—Cu1—N1—C126.6 (2)C22—C23—C24—C250.1 (4)
C3—N1—C1—C21.3 (4)C23—C24—C25—C260.4 (5)
Cu1—N1—C1—C2177.4 (2)C24—C25—C26—C270.6 (5)
C3—N2—C2—C10.3 (4)C25—C26—C27—C220.3 (4)
N1—C1—C2—N21.0 (4)C23—C22—C27—C260.3 (4)
C1—N1—C3—N21.1 (3)P2—C22—C27—C26177.2 (2)
Cu1—N1—C3—N2177.48 (18)C22—P2—C28—C33144.4 (2)
C2—N2—C3—N10.6 (4)C34—P2—C28—C33108.5 (2)
C16—P1—C4—C591.1 (3)Cu1—P2—C28—C3314.9 (2)
C10—P1—C4—C5162.0 (3)C22—P2—C28—C2932.6 (2)
Cu1—P1—C4—C539.4 (3)C34—P2—C28—C2974.6 (2)
C16—P1—C4—C989.2 (3)Cu1—P2—C28—C29162.0 (2)
C10—P1—C4—C917.7 (3)C33—C28—C29—C302.0 (4)
Cu1—P1—C4—C9140.3 (2)P2—C28—C29—C30178.9 (2)
C9—C4—C5—C63.6 (7)C28—C29—C30—C310.9 (5)
P1—C4—C5—C6176.7 (4)C29—C30—C31—C320.5 (5)
C4—C5—C6—C73.1 (9)C30—C31—C32—C330.9 (5)
C5—C6—C7—C80.5 (9)C31—C32—C33—C280.2 (5)
C6—C7—C8—C91.5 (7)C29—C28—C33—C321.6 (4)
C5—C4—C9—C81.6 (5)P2—C28—C33—C32178.7 (2)
P1—C4—C9—C8178.7 (3)C22—P2—C34—C35121.6 (2)
C7—C8—C9—C41.0 (6)C28—P2—C34—C3515.7 (3)
C16—P1—C10—C150.5 (3)Cu1—P2—C34—C35109.8 (2)
C4—P1—C10—C15107.1 (2)C22—P2—C34—C3962.6 (2)
Cu1—P1—C10—C15130.7 (2)C28—P2—C34—C39168.5 (2)
C16—P1—C10—C11178.6 (2)Cu1—P2—C34—C3966.0 (2)
C4—P1—C10—C1172.0 (2)C39—C34—C35—C362.3 (5)
Cu1—P1—C10—C1150.2 (2)P2—C34—C35—C36178.0 (3)
C15—C10—C11—C122.3 (4)C34—C35—C36—C370.0 (6)
P1—C10—C11—C12176.9 (2)C35—C36—C37—C381.9 (7)
C10—C11—C12—C131.5 (5)C36—C37—C38—C391.5 (6)
C11—C12—C13—C140.0 (5)C37—C38—C39—C340.8 (5)
C12—C13—C14—C150.5 (6)C35—C34—C39—C382.7 (4)
C11—C10—C15—C141.7 (4)P2—C34—C39—C38178.7 (2)
P1—C10—C15—C14177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.80 (4)2.34 (4)3.127 (3)171 (3)
C5—H5A···Cl10.932.783.663 (4)160
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CuCl(C3H4N2)(C18H15P)2]
Mr691.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.674 (5), 12.407 (5), 20.353 (5)
β (°) 98.956 (5)
V3)3411 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.42 × 0.41 × 0.35
Data collection
DiffractometerStoe IPDS 2T Image Plate
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Blessing, 1995; Spek, 2009)
Tmin, Tmax0.879, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24488, 9190, 6720
Rint0.053
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.02
No. of reflections9190
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.58

Computer programs: X-AREA (Stoe & Cie, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.80 (4)2.34 (4)3.127 (3)171 (3)
C5—H5A···Cl10.932.783.663 (4)160
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This research was supported by research fund No. 403/313 from Aza­rbaijan University of Tarbiat Moallem (MHS and BS).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHossaini Sadr, M., Jalili, A. R. & Razmi, H. Ng. S. W. (2005). Organomet. Chem. 690, 2128–2132.  Google Scholar
First citationKitajima, N. (1992). Adv. Inorg. Chem. 39, 18–38.  Google Scholar
First citationKitajima, N., Fujisawa, K., Fujimoto, C. & Moro-Oka, Y. (1989). Chem. Lett. pp. 421–424.  CrossRef Google Scholar
First citationPettinari, C. (2001). Polyhedron, 20, 2755–2761.  CrossRef CAS Google Scholar
First citationSadimenko, A. P. & Basson, S. S. (1996). Coord. Chem. Rev. 147, 247–275.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds