metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m762-m763

Bis(4-methyl-3,5-di­phenyl-1H-pyrazole-κN2)silver(I) nitrate

aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and bDepartment of Chemistry, University of Akron, Akron, OH, USA
*Correspondence e-mail: sadr@azaruniv.edu, hosainis@yahoo.com

(Received 30 April 2011; accepted 11 May 2011; online 20 May 2011)

In the title complex, [Ag(C16H14N2)2]NO3, the geometry around the AgI ion is T-shaped with two short Ag—N bonds to the pyrazole ligand and one long Ag—O bond to the nitrate anion. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯O and C—H⋯π inter­actions.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to pyrazolates and their complexes, see, for example; Rasika Dias et al. (2007[Rasika Dias, H. V., Alidori, S., Lobbia, G. G., Papini, G., Pellei, M. & Santini, C. (2007). Inorg. Chem. 46, 9708-9714.]); Hossaini Sadr et al. (2004[Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.], 2006[Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285-3288.], 2008a[Hossaini Sadr, M., Soltani, B., Gao, S. & Ng, S. W. (2008a). Acta Cryst. E64, m109.],b[Hossaini Sadr, M., Niaz, S. A., Gorbani, S., Gao, S. & Ng, S. W. (2008b). Acta Cryst. E64, m158-m158.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C16H14N2)2]NO3

  • Mr = 638.46

  • Triclinic, [P \overline 1]

  • a = 10.5529 (12) Å

  • b = 10.8791 (13) Å

  • c = 12.8396 (15) Å

  • α = 80.454 (2)°

  • β = 68.806 (2)°

  • γ = 82.398 (2)°

  • V = 1351.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.45 × 0.25 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.940

  • 8897 measured reflections

  • 4588 independent reflections

  • 4127 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.084

  • S = 1.15

  • 4588 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.141 (2)
Ag1—N3 2.147 (2)
Ag1—O1i 2.768 (2)
N1—Ag1—N3 167.23 (9)
N2—N1—C1 105.1 (2)
N2—N1—Ag1 115.79 (17)
C1—N1—Ag1 137.10 (19)
Ag1i—O1—N5 141.8 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N3/N4/C17–C19 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 1.97 2.686 (3) 137
N4—H4⋯O3i 0.88 1.98 2.858 (3) 175
C26—H26⋯O3ii 0.95 2.58 3.358 (4) 140
C32—H32⋯O3i 0.95 2.50 3.145 (4) 125
C12—H12⋯Cg2iii 0.95 2.99 3.437 (4) 111
C30—H30⋯Cg3iv 0.95 2.98 3.456 (3) 112
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) x-1, y, z; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of coinage metals with pyrazole derived ligands has attracted much interest, mainly to their diverse structures and applications in areas such as modeling C—H bond activations. The abundance and variety of pyrazole complexes of copper is in contrast to the small number of the corresponding silver and gold complexes (Rasika Dias et al., 2007). In continuation of our research on pyrazolate complexes (Hossaini Sadr et al., 2008a; Hossaini Sadr et al., 2008b; Hossaini Sadr et al., 2006; Hossaini Sadr et al., 2004), we synthesized the title compound and determined its structure by X-ray diffraction.

The asymmetric unit of the title complex, Fig. 1, comprises a cation complex and a nitrate ion. The bond lengths (Allen, et al., 1987) and angles are within the normal ranges. The geometry around Ag(I) is T-shaped which is coordinated by two pyrazolate ligands and a nitrate ion. The crystal structure is stabilized by the intermolecular N—H···O, C—H···O and C—H···π interactions (Table 1).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For background to pyrazolates and their complexes, see, for examples; Rasika Dias et al. (2007); Hossaini Sadr et al. (2004, 2006, 2008a,b).

Experimental top

To an acetone (40 ml) solution of 4-methyl-3,5-diphenyl-1H-pyrazole (0.1 g, 1 mmol) under a dry nitrogen atmosphere, AgNO3 (0.07 g, 1 mmol) was added and the solution was stirred for 3 h. The resulting mixture was filtered and the precipitate was washed with cold acetone (2 X 10 ml). The bright yellow precipitate was dissolved in acetonitrile and the filtrate was left to evaporate slowly at ambient temperature. Single crystals suitable for X-ray diffraction analysis were obtained after 4 days.

Refinement top

All hydrogen atoms were positioned geometrically with C–H = 0.95–0.98 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C), except the N-bound H atoms which was located from the difference Fourier map and constrained to refine with the parent atom with Uiso (H) = 1.2 Ueq (N). A rotating model were applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines show the hydrogen bondings.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the c-axis. The dashed lines show the intermolecular interactions.
Bis(4-methyl-3,5-diphenyl-1H-pyrazole-κN2)silver(I) nitrate top
Crystal data top
[Ag(C16H14N2)2]NO3Z = 2
Mr = 638.46F(000) = 652
Triclinic, P1Dx = 1.569 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5529 (12) ÅCell parameters from 5736 reflections
b = 10.8791 (13) Åθ = 2.4–28.2°
c = 12.8396 (15) ŵ = 0.79 mm1
α = 80.454 (2)°T = 100 K
β = 68.806 (2)°Plate, colorless
γ = 82.398 (2)°0.45 × 0.25 × 0.08 mm
V = 1351.1 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4588 independent reflections
Radiation source: fine-focus sealed tube4127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.717, Tmax = 0.940k = 1212
8897 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.0248P]
where P = (Fo2 + 2Fc2)/3
4588 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ag(C16H14N2)2]NO3γ = 82.398 (2)°
Mr = 638.46V = 1351.1 (3) Å3
Triclinic, P1Z = 2
a = 10.5529 (12) ÅMo Kα radiation
b = 10.8791 (13) ŵ = 0.79 mm1
c = 12.8396 (15) ÅT = 100 K
α = 80.454 (2)°0.45 × 0.25 × 0.08 mm
β = 68.806 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4588 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4127 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.940Rint = 0.022
8897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.15Δρmax = 0.51 e Å3
4588 reflectionsΔρmin = 0.59 e Å3
372 parameters
Special details top

Experimental. Ratio of minimum to maximum apparent transmission: 0.450769

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.85303 (2)0.22645 (2)0.355819 (18)0.02035 (9)
N10.6565 (2)0.2852 (2)0.34356 (19)0.0160 (5)
N20.5557 (2)0.3086 (2)0.44095 (19)0.0190 (5)
H20.56220.28600.50810.023*
N31.0319 (2)0.1865 (2)0.40203 (19)0.0171 (5)
N41.0218 (2)0.1566 (2)0.51133 (19)0.0177 (5)
H40.94560.16630.56870.021*
C10.6057 (3)0.3341 (3)0.2613 (2)0.0177 (6)
C20.4725 (3)0.3904 (3)0.3072 (2)0.0172 (6)
C30.4438 (3)0.3711 (3)0.4234 (2)0.0184 (6)
C40.3885 (3)0.4665 (3)0.2438 (2)0.0207 (6)
H4A0.33030.41220.23050.031*
H4B0.44870.50540.17140.031*
H4C0.33140.53170.28790.031*
C50.6853 (3)0.3163 (3)0.1425 (2)0.0183 (6)
C60.8266 (3)0.3216 (3)0.0980 (2)0.0190 (6)
H60.87330.34300.14260.023*
C70.8994 (3)0.2956 (3)0.0113 (2)0.0232 (7)
H70.99570.29820.04050.028*
C80.8325 (3)0.2659 (3)0.0782 (2)0.0238 (7)
H80.88280.24800.15270.029*
C90.6910 (3)0.2624 (3)0.0350 (2)0.0235 (7)
H90.64450.24310.08050.028*
C100.6181 (3)0.2871 (3)0.0747 (2)0.0218 (6)
H100.52190.28420.10390.026*
C110.3216 (3)0.3995 (3)0.5199 (2)0.0175 (6)
C120.1916 (3)0.4080 (3)0.5121 (3)0.0221 (6)
H120.18220.40130.44250.026*
C130.0766 (3)0.4261 (3)0.6060 (3)0.0273 (7)
H130.01140.43120.60050.033*
C140.0892 (3)0.4367 (3)0.7078 (3)0.0269 (7)
H140.01000.44970.77160.032*
C150.2172 (3)0.4285 (3)0.7166 (3)0.0271 (7)
H150.22560.43500.78670.033*
C160.3326 (3)0.4110 (3)0.6234 (2)0.0208 (6)
H160.42020.40660.62960.025*
C171.1630 (3)0.1559 (3)0.3418 (2)0.0171 (6)
C181.2370 (3)0.1068 (3)0.4130 (2)0.0170 (6)
C191.1421 (3)0.1098 (3)0.5220 (2)0.0169 (6)
C201.3853 (3)0.0610 (3)0.3798 (2)0.0212 (6)
H20A1.41950.04470.30110.032*
H20B1.39590.01640.42830.032*
H20C1.43720.12470.38830.032*
C211.2098 (3)0.1833 (3)0.2165 (2)0.0178 (6)
C221.1694 (3)0.2986 (3)0.1667 (2)0.0207 (6)
H221.10970.35710.21290.025*
C231.2154 (3)0.3282 (3)0.0512 (3)0.0253 (7)
H231.18780.40730.01870.030*
C241.3016 (3)0.2440 (3)0.0180 (3)0.0246 (7)
H241.33420.26530.09750.029*
C251.3394 (3)0.1284 (3)0.0303 (3)0.0237 (7)
H251.39680.06940.01670.028*
C261.2947 (3)0.0973 (3)0.1465 (2)0.0194 (6)
H261.32180.01760.17850.023*
C271.1550 (3)0.0741 (2)0.6337 (2)0.0153 (6)
C281.2747 (3)0.0907 (3)0.6517 (2)0.0200 (6)
H281.34970.12400.59070.024*
C291.2845 (3)0.0590 (3)0.7577 (2)0.0199 (6)
H291.36510.07280.76940.024*
C301.1771 (3)0.0073 (3)0.8471 (2)0.0219 (6)
H301.18490.01610.91930.026*
C311.0588 (3)0.0101 (3)0.8301 (2)0.0213 (6)
H310.98530.04570.89090.026*
C321.0469 (3)0.0244 (3)0.7246 (2)0.0175 (6)
H320.96440.01400.71440.021*
O10.2945 (2)0.7310 (3)0.42450 (18)0.0354 (6)
O20.4353 (2)0.7879 (2)0.25698 (18)0.0285 (5)
O30.2167 (2)0.8156 (2)0.29417 (17)0.0279 (5)
N50.3164 (2)0.7795 (2)0.32412 (19)0.0190 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01459 (13)0.02873 (15)0.01819 (13)0.00052 (9)0.00718 (9)0.00177 (9)
N10.0128 (11)0.0170 (12)0.0174 (12)0.0011 (10)0.0053 (10)0.0021 (9)
N20.0179 (12)0.0272 (14)0.0109 (12)0.0039 (11)0.0030 (10)0.0029 (10)
N30.0176 (12)0.0201 (13)0.0143 (12)0.0003 (10)0.0068 (10)0.0023 (9)
N40.0139 (12)0.0259 (14)0.0124 (12)0.0017 (10)0.0028 (10)0.0037 (10)
C10.0170 (14)0.0193 (15)0.0181 (15)0.0068 (12)0.0055 (12)0.0032 (11)
C20.0171 (14)0.0169 (14)0.0193 (15)0.0039 (12)0.0073 (12)0.0029 (11)
C30.0180 (14)0.0185 (15)0.0204 (15)0.0068 (12)0.0061 (12)0.0042 (11)
C40.0213 (15)0.0201 (15)0.0214 (15)0.0018 (13)0.0092 (13)0.0035 (12)
C50.0218 (15)0.0171 (15)0.0169 (14)0.0026 (12)0.0084 (12)0.0003 (11)
C60.0205 (15)0.0197 (15)0.0182 (15)0.0021 (12)0.0089 (12)0.0009 (11)
C70.0196 (15)0.0262 (17)0.0209 (15)0.0016 (13)0.0039 (13)0.0025 (12)
C80.0292 (17)0.0239 (16)0.0160 (15)0.0013 (14)0.0052 (13)0.0031 (12)
C90.0291 (17)0.0260 (17)0.0200 (16)0.0030 (14)0.0138 (14)0.0027 (12)
C100.0190 (15)0.0256 (16)0.0203 (15)0.0036 (13)0.0051 (13)0.0042 (12)
C110.0174 (14)0.0127 (14)0.0199 (15)0.0011 (11)0.0043 (12)0.0008 (11)
C120.0214 (16)0.0186 (15)0.0250 (16)0.0014 (13)0.0078 (13)0.0024 (12)
C130.0191 (16)0.0245 (17)0.0317 (18)0.0034 (13)0.0044 (14)0.0003 (13)
C140.0275 (17)0.0178 (15)0.0234 (16)0.0069 (13)0.0017 (14)0.0006 (12)
C150.0389 (19)0.0198 (16)0.0204 (16)0.0034 (14)0.0069 (14)0.0032 (12)
C160.0234 (16)0.0168 (15)0.0224 (15)0.0029 (13)0.0076 (13)0.0022 (12)
C170.0136 (14)0.0215 (15)0.0162 (14)0.0051 (12)0.0020 (12)0.0062 (11)
C180.0144 (14)0.0210 (15)0.0157 (14)0.0043 (12)0.0031 (12)0.0051 (11)
C190.0176 (14)0.0172 (14)0.0183 (14)0.0035 (12)0.0079 (12)0.0028 (11)
C200.0165 (14)0.0287 (17)0.0186 (15)0.0010 (13)0.0047 (12)0.0074 (12)
C210.0128 (13)0.0242 (16)0.0180 (14)0.0054 (12)0.0055 (12)0.0036 (12)
C220.0179 (14)0.0215 (15)0.0229 (15)0.0003 (12)0.0064 (13)0.0066 (12)
C230.0235 (16)0.0284 (17)0.0247 (16)0.0013 (14)0.0110 (14)0.0001 (13)
C240.0215 (15)0.0346 (18)0.0164 (15)0.0007 (14)0.0070 (13)0.0001 (13)
C250.0181 (15)0.0322 (18)0.0204 (16)0.0002 (13)0.0046 (13)0.0090 (13)
C260.0158 (14)0.0228 (16)0.0204 (15)0.0002 (12)0.0075 (12)0.0026 (12)
C270.0171 (14)0.0110 (13)0.0191 (14)0.0062 (11)0.0094 (12)0.0040 (11)
C280.0185 (15)0.0237 (16)0.0174 (15)0.0062 (12)0.0042 (12)0.0029 (12)
C290.0187 (14)0.0202 (15)0.0246 (16)0.0042 (12)0.0125 (13)0.0064 (12)
C300.0253 (16)0.0236 (16)0.0176 (15)0.0063 (13)0.0104 (13)0.0049 (12)
C310.0197 (15)0.0225 (16)0.0174 (15)0.0019 (13)0.0013 (12)0.0030 (12)
C320.0154 (14)0.0180 (15)0.0195 (15)0.0012 (12)0.0056 (12)0.0069 (11)
O10.0279 (12)0.0592 (17)0.0178 (12)0.0029 (12)0.0119 (10)0.0025 (11)
O20.0163 (11)0.0369 (13)0.0280 (12)0.0034 (10)0.0004 (10)0.0078 (10)
O30.0189 (11)0.0466 (14)0.0178 (11)0.0030 (10)0.0080 (9)0.0040 (10)
N50.0200 (13)0.0225 (13)0.0163 (12)0.0038 (11)0.0059 (11)0.0063 (10)
Geometric parameters (Å, º) top
Ag1—N12.141 (2)C14—H140.9500
Ag1—N32.147 (2)C15—C161.383 (4)
Ag1—O1i2.768 (2)C15—H150.9500
N1—N21.354 (3)C16—H160.9500
N1—C11.354 (4)C17—C181.405 (4)
N2—C31.356 (4)C17—C211.492 (4)
N2—H20.8807C18—C191.399 (4)
N3—C171.347 (4)C18—C201.504 (4)
N3—N41.355 (3)C19—C271.472 (4)
N4—C191.349 (4)C20—H20A0.9800
N4—H40.8804C20—H20B0.9800
C1—C21.411 (4)C20—H20C0.9800
C1—C51.483 (4)C21—C221.397 (4)
C2—C31.396 (4)C21—C261.401 (4)
C2—C41.495 (4)C22—C231.379 (4)
C3—C111.469 (4)C22—H220.9500
C4—H4A0.9800C23—C241.387 (4)
C4—H4B0.9800C23—H230.9500
C4—H4C0.9800C24—C251.383 (5)
C5—C61.397 (4)C24—H240.9500
C5—C101.398 (4)C25—C261.389 (4)
C6—C71.390 (4)C25—H250.9500
C6—H60.9500C26—H260.9500
C7—C81.389 (4)C27—C321.396 (4)
C7—H70.9500C27—C281.403 (4)
C8—C91.396 (4)C28—C291.385 (4)
C8—H80.9500C28—H280.9500
C9—C101.392 (4)C29—C301.390 (4)
C9—H90.9500C29—H290.9500
C10—H100.9500C30—C311.384 (4)
C11—C121.402 (4)C30—H300.9500
C11—C161.402 (4)C31—C321.390 (4)
C12—C131.386 (4)C31—H310.9500
C12—H120.9500C32—H320.9500
C13—C141.385 (5)O1—N51.259 (3)
C13—H130.9500O2—N51.244 (3)
C14—C151.386 (5)O3—N51.242 (3)
N1—Ag1—N3167.23 (9)C16—C15—H15120.0
N2—N1—C1105.1 (2)C14—C15—H15120.0
N2—N1—Ag1115.79 (17)C15—C16—C11120.6 (3)
C1—N1—Ag1137.10 (19)C15—C16—H16119.7
Ag1i—O1—N5141.8 (2)C11—C16—H16119.7
N1—N2—C3112.3 (2)N3—C17—C18110.9 (2)
N1—N2—H2123.8N3—C17—C21118.8 (3)
C3—N2—H2123.9C18—C17—C21130.2 (3)
C17—N3—N4105.3 (2)C19—C18—C17104.7 (2)
C17—N3—Ag1131.80 (19)C19—C18—C20127.4 (3)
N4—N3—Ag1121.04 (17)C17—C18—C20127.8 (2)
C19—N4—N3112.1 (2)N4—C19—C18106.9 (2)
C19—N4—H4123.9N4—C19—C27121.2 (2)
N3—N4—H4123.9C18—C19—C27132.0 (3)
N1—C1—C2111.0 (2)C18—C20—H20A109.5
N1—C1—C5120.1 (3)C18—C20—H20B109.5
C2—C1—C5128.8 (3)H20A—C20—H20B109.5
C3—C2—C1104.6 (3)C18—C20—H20C109.5
C3—C2—C4128.0 (3)H20A—C20—H20C109.5
C1—C2—C4127.1 (3)H20B—C20—H20C109.5
N2—C3—C2107.0 (2)C22—C21—C26118.6 (3)
N2—C3—C11119.9 (3)C22—C21—C17119.5 (3)
C2—C3—C11133.0 (3)C26—C21—C17122.0 (3)
C2—C4—H4A109.5C23—C22—C21120.6 (3)
C2—C4—H4B109.5C23—C22—H22119.7
H4A—C4—H4B109.5C21—C22—H22119.7
C2—C4—H4C109.5C22—C23—C24120.8 (3)
H4A—C4—H4C109.5C22—C23—H23119.6
H4B—C4—H4C109.5C24—C23—H23119.6
C6—C5—C10119.0 (3)C25—C24—C23119.1 (3)
C6—C5—C1121.7 (3)C25—C24—H24120.5
C10—C5—C1119.2 (3)C23—C24—H24120.5
C7—C6—C5120.3 (3)C24—C25—C26120.9 (3)
C7—C6—H6119.9C24—C25—H25119.6
C5—C6—H6119.9C26—C25—H25119.6
C8—C7—C6120.6 (3)C25—C26—C21120.0 (3)
C8—C7—H7119.7C25—C26—H26120.0
C6—C7—H7119.7C21—C26—H26120.0
C7—C8—C9119.5 (3)C32—C27—C28118.5 (3)
C7—C8—H8120.2C32—C27—C19120.4 (3)
C9—C8—H8120.2C28—C27—C19121.1 (3)
C10—C9—C8120.0 (3)C29—C28—C27120.5 (3)
C10—C9—H9120.0C29—C28—H28119.8
C8—C9—H9120.0C27—C28—H28119.8
C9—C10—C5120.6 (3)C28—C29—C30120.4 (3)
C9—C10—H10119.7C28—C29—H29119.8
C5—C10—H10119.7C30—C29—H29119.8
C12—C11—C16118.8 (3)C31—C30—C29119.5 (3)
C12—C11—C3120.6 (3)C31—C30—H30120.2
C16—C11—C3120.5 (3)C29—C30—H30120.2
C13—C12—C11120.1 (3)C30—C31—C32120.4 (3)
C13—C12—H12120.0C30—C31—H31119.8
C11—C12—H12120.0C32—C31—H31119.8
C14—C13—C12120.4 (3)C31—C32—C27120.7 (3)
C14—C13—H13119.8C31—C32—H32119.7
C12—C13—H13119.8C27—C32—H32119.7
C13—C14—C15120.1 (3)O3—N5—O2121.6 (2)
C13—C14—H14119.9O3—N5—O1118.2 (2)
C15—C14—H14119.9O2—N5—O1120.2 (2)
C16—C15—C14120.0 (3)
N3—Ag1—N1—N220.6 (5)C13—C14—C15—C160.7 (5)
N3—Ag1—N1—C1140.4 (4)C14—C15—C16—C110.9 (4)
C1—N1—N2—C30.5 (3)C12—C11—C16—C150.9 (4)
Ag1—N1—N2—C3166.22 (18)C3—C11—C16—C15175.2 (3)
N1—Ag1—N3—C17161.4 (3)N4—N3—C17—C180.3 (3)
N1—Ag1—N3—N436.5 (5)Ag1—N3—C17—C18164.46 (19)
C17—N3—N4—C190.8 (3)N4—N3—C17—C21177.1 (2)
Ag1—N3—N4—C19167.07 (18)Ag1—N3—C17—C2118.7 (4)
N2—N1—C1—C20.9 (3)N3—C17—C18—C190.3 (3)
Ag1—N1—C1—C2161.4 (2)C21—C17—C18—C19176.0 (3)
N2—N1—C1—C5175.0 (2)N3—C17—C18—C20179.7 (3)
Ag1—N1—C1—C522.7 (4)C21—C17—C18—C204.0 (5)
N1—C1—C2—C31.0 (3)N3—N4—C19—C181.0 (3)
C5—C1—C2—C3174.4 (3)N3—N4—C19—C27178.4 (2)
N1—C1—C2—C4172.6 (3)C17—C18—C19—N40.7 (3)
C5—C1—C2—C411.9 (5)C20—C18—C19—N4179.2 (3)
N1—N2—C3—C20.1 (3)C17—C18—C19—C27178.6 (3)
N1—N2—C3—C11177.2 (2)C20—C18—C19—C271.5 (5)
C1—C2—C3—N20.7 (3)N3—C17—C21—C2243.8 (4)
C4—C2—C3—N2172.9 (3)C18—C17—C21—C22132.3 (3)
C1—C2—C3—C11176.2 (3)N3—C17—C21—C26136.9 (3)
C4—C2—C3—C1110.2 (5)C18—C17—C21—C2647.0 (4)
N1—C1—C5—C638.9 (4)C26—C21—C22—C231.8 (4)
C2—C1—C5—C6146.0 (3)C17—C21—C22—C23177.5 (3)
N1—C1—C5—C10137.7 (3)C21—C22—C23—C240.6 (5)
C2—C1—C5—C1037.4 (4)C22—C23—C24—C251.0 (5)
C10—C5—C6—C71.3 (4)C23—C24—C25—C261.4 (5)
C1—C5—C6—C7175.3 (3)C24—C25—C26—C210.2 (4)
C5—C6—C7—C80.9 (5)C22—C21—C26—C251.4 (4)
C6—C7—C8—C90.2 (5)C17—C21—C26—C25177.8 (3)
C7—C8—C9—C100.8 (5)N4—C19—C27—C3234.1 (4)
C8—C9—C10—C50.4 (5)C18—C19—C27—C32146.7 (3)
C6—C5—C10—C90.6 (4)N4—C19—C27—C28145.0 (3)
C1—C5—C10—C9176.0 (3)C18—C19—C27—C2834.2 (5)
N2—C3—C11—C12149.9 (3)C32—C27—C28—C290.4 (4)
C2—C3—C11—C1226.7 (5)C19—C27—C28—C29178.7 (3)
N2—C3—C11—C1626.1 (4)C27—C28—C29—C301.7 (4)
C2—C3—C11—C16157.3 (3)C28—C29—C30—C311.4 (4)
C16—C11—C12—C130.6 (4)C29—C30—C31—C320.2 (4)
C3—C11—C12—C13175.4 (3)C30—C31—C32—C271.6 (4)
C11—C12—C13—C140.4 (5)C28—C27—C32—C311.2 (4)
C12—C13—C14—C150.4 (5)C19—C27—C32—C31179.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N3/N4/C17–C19 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.972.686 (3)137
N4—H4···O3i0.881.982.858 (3)175
C26—H26···O3ii0.952.583.358 (4)140
C32—H32···O3i0.952.503.145 (4)125
C12—H12···Cg2iii0.952.993.437 (4)111
C30—H30···Cg3iv0.952.983.456 (3)112
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C16H14N2)2]NO3
Mr638.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.5529 (12), 10.8791 (13), 12.8396 (15)
α, β, γ (°)80.454 (2), 68.806 (2), 82.398 (2)
V3)1351.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.45 × 0.25 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.717, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
8897, 4588, 4127
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.15
No. of reflections4588
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ag1—N12.141 (2)Ag1—O1i2.768 (2)
Ag1—N32.147 (2)
N1—Ag1—N3167.23 (9)C1—N1—Ag1137.10 (19)
N2—N1—C1105.1 (2)Ag1i—O1—N5141.8 (2)
N2—N1—Ag1115.79 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N3/N4/C17–C19 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.972.686 (3)137
N4—H4···O3i0.881.982.858 (3)175
C26—H26···O3ii0.952.583.358 (4)140
C32—H32···O3i0.952.503.145 (4)125
C12—H12···Cg2iii0.952.993.437 (4)111
C30—H30···Cg3iv0.952.983.456 (3)112
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+2, y, z+1.
 

Acknowledgements

This research was supported by research fund No. 403/313 from Aza­rbaijan University of Tarbiat Moallem (MHS and BS).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHossaini Sadr, M., Niaz, S. A., Gorbani, S., Gao, S. & Ng, S. W. (2008b). Acta Cryst. E64, m158–m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationHossaini Sadr, M., Soltani, B., Gao, S. & Ng, S. W. (2008a). Acta Cryst. E64, m109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasika Dias, H. V., Alidori, S., Lobbia, G. G., Papini, G., Pellei, M. & Santini, C. (2007). Inorg. Chem. 46, 9708–9714.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m762-m763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds