metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(5-Chloro-2-oxido­benzyl-κO)-2,4-dihy­dr­oxy­benzohydrazidato-κ2N′,O](methanol-κO)dioxidomolybdenum(VI)–4,4′-bi­pyridine (1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 May 2011; accepted 7 May 2011; online 14 May 2011)

In the title co-crystal, [Mo(C14H9ClN2O4)O2(CH3OH)]·C10H8N2, the deprotonated Schiff base O,N,O′-chelates to the MoVI atom, the three atoms involved in chelation comprising the fac sites of the octa­hedron surrounding the methanol-coordinated metal atom. The methanol mol­ecule forms an O—H⋯N hydrogen bond to an N atom of the 4,4′-bipyridine solvent mol­ecule; the hy­droxy group of the Schiff base forms an O—H⋯N hydrogen bond to the other N atom of another mol­ecule. The two hydrogen bonds leading to the formation of a helical chain running along the b axis.

Related literature

For a related MoVIO2–4′,4-bipyridine adduct, see: Dinda et al. (2006[Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375-2382.]). For the structure of the unsubstituted Schiff base, see: Pan & Yang (2005[Pan, F.-Y. & Yang, J.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 517-518.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C14H9ClN2O4)O2(CH4O)]·C10H8N2

  • Mr = 620.85

  • Monoclinic, P 21 /n

  • a = 6.9575 (3) Å

  • b = 7.4541 (4) Å

  • c = 47.197 (2) Å

  • β = 92.0073 (6)°

  • V = 2446.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 1.000

  • 29717 measured reflections

  • 5604 independent reflections

  • 5408 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.23

  • 5604 reflections

  • 356 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.84 (1) 1.85 (3) 2.600 (4) 147 (6)
O3—H3⋯N3 0.84 (1) 1.92 (2) 2.741 (5) 166 (6)
O7—H7⋯N4i 0.84 (1) 1.84 (1) 2.679 (4) 175 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Schiff bases that are synthesized by condensing salicylaldehyde (and its substituted analogs) with benzohydrazide (and its substituted analogs) function as terdentate O,N,O'-chelates to a wide range of metal ions. A large number of metal derivatives have been reported; in octahedral systems, the ligand generally exists as a doubly-deprotonated species that chelates in a fac manner. The crystal structure of the parent (unsubstituted) ligand has been reported (Pan & Yang, 2005); a dioxomolybdenum(VI) derivative is known in which 4,4'-bipyridine binds to two metal atoms (Dinda et al., 2006). In the present study, using a Schiff base that possesses substitutents leads to a solvent-coordinated derivative in which 4,4'-bipyridine interacts indirectly, through the solvent molecule, in an outer-sphere coordination mode. In the co-crystal, MoO2(CH3OH)(C14H9ClN2O4).C10H8N2(Scheme I), the deprotonated Schiff base O,N,O'-chelates to the MoVI atom, the three atoms involved in chelation comprising the fac sites of the octahedron surrounding the methanol-coordinated metal center (Fig. 1). The solvent molecule forms an O–H···N hydrogen bond to a N atom of the 4,4'-bipyridine molecule; the hydroxy group forms an O–H···N hydrogen bond to the other N atom of another molecule, the two hydrogen bonds leading to the formation of a helical chain that runs along the b-axis of the monoclinic unit cell (Table 1).

Related literature top

For a related MoVIO2–4',4-bipyridine adduct, see: Dinda et al. (2006). For the structure of the unsubstituted Schiff base, see: Pan & Yang (2005).

Experimental top

3-Ethoxysalicylaldehyde (0.166 g, 1 mmol) and 2,4-dihydroxybenzohydrazide (0.156 g, 1 mmol) were condensed in methanol (100 ml). The solution was heated to give a yellow coloration. The cool solution yielded the desired Schiff base as a yellow compound. The ligand (0.306 g, 1 mmol) and di(acetylacetonato)dioxomolybdenum(VI) (0.328 g, 1 mmol) were dissolved in heated in methanol for an hour. To the orange-red solution was added 4,4'-bipyridine (0.08 g, 0.5 mmol); heating was continued for another hour. The solution was filtered and set aside for the growth of crystals, m.p. 533–535 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times Ueq(C). The oxygen-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were freely refined.

The final difference Fourier map had a hole in the vicinity of O6.

Omitted because of bad disagreements were the (0 0 2) and (0 0 4) reflections.

The second parameter in the weighting scheme is somewhat large; lowering this had only a marginal effect on the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of MoO2(CH3OH)(C14H9ClN2O4).C10H8N2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[N'-(5-Chloro-2-oxidobenzyl-κO)-2,4-dihydroxybenzohydrazidato- κ2N',O](methanol-κO)dioxidomolybdenum(VI)–4,4'- bipyridine (1/1) top
Crystal data top
[Mo(C14H9ClN2O4)O2(CH4O)]·C10H8N2F(000) = 1256
Mr = 620.85Dx = 1.686 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9874 reflections
a = 6.9575 (3) Åθ = 2.6–28.2°
b = 7.4541 (4) ŵ = 0.70 mm1
c = 47.197 (2) ÅT = 100 K
β = 92.0073 (6)°Prism, orange–red
V = 2446.2 (2) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5604 independent reflections
Radiation source: fine-focus sealed tube5408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.885, Tmax = 1.000k = 99
29717 measured reflectionsl = 6161
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.058P)2 + 9.6979P]
where P = (Fo2 + 2Fc2)/3
5604 reflections(Δ/σ)max = 0.001
356 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Mo(C14H9ClN2O4)O2(CH4O)]·C10H8N2V = 2446.2 (2) Å3
Mr = 620.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9575 (3) ŵ = 0.70 mm1
b = 7.4541 (4) ÅT = 100 K
c = 47.197 (2) Å0.25 × 0.20 × 0.20 mm
β = 92.0073 (6)°
Data collection top
Bruker SMART APEX
diffractometer
5604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5408 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 1.000Rint = 0.032
29717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 0.55 e Å3
5604 reflectionsΔρmin = 1.25 e Å3
356 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo11.01769 (4)0.07720 (4)0.416314 (7)0.01254 (11)
Cl10.25401 (13)0.34030 (13)0.50086 (2)0.0185 (2)
O10.9736 (4)0.1896 (4)0.37790 (6)0.0160 (5)
O20.4441 (4)0.1634 (4)0.33108 (6)0.0213 (6)
H20.471 (8)0.126 (8)0.3475 (6)0.040 (17)*
O30.7322 (5)0.4673 (5)0.25549 (6)0.0303 (8)
H30.624 (4)0.454 (8)0.2474 (11)0.031 (15)*
O40.9260 (4)0.0010 (4)0.45224 (6)0.0156 (5)
O51.2262 (4)0.1843 (4)0.42621 (6)0.0173 (6)
O61.0877 (4)0.1250 (4)0.40328 (6)0.0191 (6)
O70.8759 (4)0.3422 (4)0.42838 (6)0.0161 (5)
H70.804 (6)0.394 (7)0.4163 (9)0.029 (14)*
N10.6590 (5)0.0904 (4)0.37578 (7)0.0149 (6)
N20.7088 (5)0.0358 (4)0.40308 (6)0.0126 (6)
N30.4092 (5)0.3848 (5)0.22321 (7)0.0218 (7)
N40.1397 (5)0.0211 (5)0.10765 (7)0.0187 (7)
C10.7832 (6)0.2412 (5)0.33577 (8)0.0151 (7)
C20.9404 (6)0.3226 (5)0.32289 (8)0.0177 (8)
H2A1.06180.32550.33270.021*
C30.9220 (7)0.3981 (6)0.29631 (9)0.0232 (9)
H3A1.02870.45560.28820.028*
C40.7447 (6)0.3896 (6)0.28138 (8)0.0215 (8)
C50.5880 (6)0.3080 (6)0.29358 (9)0.0221 (8)
H50.46810.30250.28340.027*
C60.6056 (6)0.2349 (5)0.32048 (8)0.0166 (7)
C70.8056 (5)0.1687 (5)0.36418 (8)0.0139 (7)
C80.5761 (5)0.0460 (5)0.41652 (8)0.0139 (7)
H80.45640.06730.40680.017*
C90.5994 (5)0.1073 (5)0.44556 (8)0.0127 (7)
C100.4417 (5)0.1914 (5)0.45779 (8)0.0151 (7)
H100.32760.21310.44670.018*
C110.4521 (5)0.2421 (5)0.48572 (8)0.0144 (7)
C120.6185 (6)0.2137 (5)0.50248 (8)0.0155 (7)
H120.62370.24960.52180.019*
C130.7755 (5)0.1333 (5)0.49074 (8)0.0129 (7)
H130.88950.11480.50200.015*
C140.7686 (5)0.0786 (5)0.46234 (8)0.0138 (7)
C150.9788 (6)0.4819 (6)0.44335 (9)0.0217 (8)
H15A0.88730.56910.45060.033*
H15B1.06550.54200.43050.033*
H15C1.05410.42980.45930.033*
C160.4737 (6)0.3877 (5)0.19684 (8)0.0183 (8)
H160.59720.43770.19400.022*
C170.3700 (6)0.3215 (5)0.17342 (8)0.0172 (8)
H170.42160.32720.15510.021*
C180.1891 (6)0.2466 (5)0.17723 (9)0.0179 (8)
C190.1193 (6)0.2480 (6)0.20453 (9)0.0233 (9)
H190.00550.20290.20800.028*
C200.2334 (7)0.3156 (7)0.22641 (9)0.0284 (10)
H200.18460.31310.24500.034*
C210.0510 (6)0.0001 (6)0.10986 (8)0.0190 (8)
H210.11230.06770.09570.023*
C220.1631 (6)0.0724 (6)0.13174 (9)0.0190 (8)
H220.29860.05580.13230.023*
C230.0753 (6)0.1701 (5)0.15298 (8)0.0165 (7)
C240.1230 (6)0.1915 (5)0.15073 (9)0.0180 (8)
H240.18870.25680.16470.022*
C250.2235 (6)0.1164 (6)0.12788 (9)0.0206 (8)
H250.35880.13320.12650.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01129 (17)0.01290 (17)0.01333 (17)0.00009 (11)0.00088 (11)0.00010 (12)
Cl10.0184 (4)0.0176 (4)0.0195 (4)0.0031 (3)0.0036 (3)0.0016 (4)
O10.0144 (12)0.0193 (14)0.0140 (13)0.0022 (10)0.0008 (10)0.0006 (11)
O20.0198 (14)0.0291 (16)0.0146 (14)0.0070 (12)0.0038 (11)0.0040 (12)
O30.0366 (19)0.042 (2)0.0120 (14)0.0127 (16)0.0049 (13)0.0059 (13)
O40.0149 (13)0.0187 (14)0.0130 (13)0.0028 (11)0.0029 (10)0.0006 (11)
O50.0146 (13)0.0192 (14)0.0180 (13)0.0004 (11)0.0019 (10)0.0001 (11)
O60.0203 (14)0.0187 (14)0.0180 (14)0.0025 (11)0.0017 (11)0.0023 (11)
O70.0202 (13)0.0136 (13)0.0140 (13)0.0003 (11)0.0051 (10)0.0021 (10)
N10.0161 (15)0.0154 (15)0.0130 (15)0.0002 (12)0.0021 (12)0.0018 (12)
N20.0162 (15)0.0121 (14)0.0093 (14)0.0011 (12)0.0020 (11)0.0004 (11)
N30.0302 (19)0.0229 (18)0.0120 (16)0.0037 (15)0.0024 (14)0.0007 (13)
N40.0209 (17)0.0145 (16)0.0205 (17)0.0039 (13)0.0019 (13)0.0045 (13)
C10.0200 (18)0.0128 (17)0.0124 (17)0.0009 (14)0.0010 (14)0.0027 (14)
C20.0204 (19)0.0190 (19)0.0136 (17)0.0053 (15)0.0009 (14)0.0029 (15)
C30.028 (2)0.025 (2)0.0172 (19)0.0073 (17)0.0025 (16)0.0024 (16)
C40.031 (2)0.021 (2)0.0124 (18)0.0050 (17)0.0000 (16)0.0015 (15)
C50.024 (2)0.026 (2)0.0166 (19)0.0048 (17)0.0056 (15)0.0001 (16)
C60.0203 (19)0.0148 (18)0.0147 (17)0.0028 (14)0.0001 (14)0.0012 (14)
C70.0163 (17)0.0133 (17)0.0118 (16)0.0011 (14)0.0015 (13)0.0050 (14)
C80.0127 (16)0.0124 (17)0.0165 (17)0.0002 (13)0.0013 (13)0.0011 (14)
C90.0159 (17)0.0097 (16)0.0124 (16)0.0018 (13)0.0009 (13)0.0001 (13)
C100.0161 (17)0.0112 (17)0.0180 (18)0.0014 (14)0.0001 (14)0.0014 (14)
C110.0159 (17)0.0088 (16)0.0186 (18)0.0005 (13)0.0042 (14)0.0020 (14)
C120.0208 (19)0.0085 (16)0.0173 (18)0.0023 (14)0.0007 (14)0.0015 (14)
C130.0186 (17)0.0103 (16)0.0095 (16)0.0003 (14)0.0023 (13)0.0020 (13)
C140.0170 (17)0.0101 (16)0.0143 (17)0.0021 (14)0.0007 (14)0.0014 (14)
C150.025 (2)0.0143 (18)0.026 (2)0.0030 (16)0.0001 (16)0.0046 (16)
C160.024 (2)0.0153 (18)0.0159 (18)0.0008 (15)0.0006 (15)0.0027 (15)
C170.0210 (19)0.0188 (19)0.0117 (17)0.0020 (15)0.0003 (14)0.0018 (14)
C180.0179 (18)0.0168 (18)0.0191 (19)0.0035 (15)0.0008 (15)0.0021 (15)
C190.022 (2)0.028 (2)0.020 (2)0.0039 (17)0.0056 (16)0.0006 (17)
C200.034 (2)0.037 (3)0.0143 (19)0.006 (2)0.0050 (17)0.0007 (18)
C210.024 (2)0.0170 (19)0.0164 (18)0.0022 (16)0.0019 (15)0.0018 (15)
C220.0150 (18)0.0189 (19)0.023 (2)0.0009 (15)0.0020 (15)0.0001 (16)
C230.0168 (18)0.0149 (18)0.0176 (18)0.0025 (14)0.0016 (14)0.0056 (15)
C240.0163 (18)0.0144 (18)0.024 (2)0.0023 (14)0.0044 (15)0.0022 (15)
C250.0135 (18)0.020 (2)0.028 (2)0.0010 (15)0.0011 (15)0.0030 (17)
Geometric parameters (Å, º) top
Mo1—O61.705 (3)C8—C91.448 (5)
Mo1—O51.707 (3)C8—H80.9500
Mo1—O41.918 (3)C9—C101.405 (5)
Mo1—O12.011 (3)C9—C141.412 (5)
Mo1—N22.238 (3)C10—C111.370 (5)
Mo1—O72.289 (3)C10—H100.9500
Cl1—C111.737 (4)C11—C121.395 (5)
O1—C71.326 (5)C12—C131.379 (5)
O2—C61.355 (5)C12—H120.9500
O2—H20.840 (10)C13—C141.400 (5)
O3—C41.352 (5)C13—H130.9500
O3—H30.840 (10)C15—H15A0.9800
O4—C141.347 (5)C15—H15B0.9800
O7—C151.436 (5)C15—H15C0.9800
O7—H70.838 (10)C16—C171.389 (6)
N1—C71.311 (5)C16—H160.9500
N1—N21.384 (4)C17—C181.394 (6)
N2—C81.292 (5)C17—H170.9500
N3—C161.338 (5)C18—C191.393 (6)
N3—C201.341 (6)C18—C231.483 (6)
N4—C211.337 (5)C19—C201.376 (6)
N4—C251.340 (6)C19—H190.9500
C1—C21.408 (5)C20—H200.9500
C1—C61.410 (5)C21—C221.382 (6)
C1—C71.449 (5)C21—H210.9500
C2—C31.377 (6)C22—C231.397 (6)
C2—H2A0.9500C22—H220.9500
C3—C41.401 (6)C23—C241.389 (5)
C3—H3A0.9500C24—C251.383 (6)
C4—C51.390 (6)C24—H240.9500
C5—C61.383 (6)C25—H250.9500
C5—H50.9500
O6—Mo1—O5105.14 (14)C10—C9—C8117.8 (3)
O6—Mo1—O499.50 (13)C14—C9—C8123.1 (3)
O5—Mo1—O4101.67 (12)C11—C10—C9120.2 (4)
O6—Mo1—O194.56 (13)C11—C10—H10119.9
O5—Mo1—O198.81 (12)C9—C10—H10119.9
O4—Mo1—O1151.09 (11)C10—C11—C12121.2 (4)
O6—Mo1—N293.51 (13)C10—C11—Cl1119.7 (3)
O5—Mo1—N2159.97 (13)C12—C11—Cl1119.0 (3)
O4—Mo1—N281.96 (11)C13—C12—C11119.4 (4)
O1—Mo1—N272.03 (11)C13—C12—H12120.3
O6—Mo1—O7169.60 (12)C11—C12—H12120.3
O5—Mo1—O784.14 (12)C12—C13—C14120.7 (3)
O4—Mo1—O782.88 (11)C12—C13—H13119.7
O1—Mo1—O779.14 (11)C14—C13—H13119.7
N2—Mo1—O776.73 (11)O4—C14—C13117.8 (3)
C7—O1—Mo1119.7 (2)O4—C14—C9122.7 (3)
C6—O2—H2108 (4)C13—C14—C9119.5 (3)
C4—O3—H3113 (4)O7—C15—H15A109.5
C14—O4—Mo1138.0 (2)O7—C15—H15B109.5
C15—O7—Mo1122.4 (2)H15A—C15—H15B109.5
C15—O7—H7106 (4)O7—C15—H15C109.5
Mo1—O7—H7119 (4)H15A—C15—H15C109.5
C7—N1—N2110.3 (3)H15B—C15—H15C109.5
C8—N2—N1115.9 (3)N3—C16—C17123.5 (4)
C8—N2—Mo1128.6 (3)N3—C16—H16118.2
N1—N2—Mo1115.2 (2)C17—C16—H16118.2
C16—N3—C20116.6 (4)C16—C17—C18119.1 (4)
C21—N4—C25117.5 (4)C16—C17—H17120.5
C2—C1—C6118.3 (4)C18—C17—H17120.5
C2—C1—C7120.0 (4)C19—C18—C17117.5 (4)
C6—C1—C7121.7 (4)C19—C18—C23121.5 (4)
C3—C2—C1121.4 (4)C17—C18—C23121.0 (4)
C3—C2—H2A119.3C20—C19—C18119.1 (4)
C1—C2—H2A119.3C20—C19—H19120.5
C2—C3—C4119.5 (4)C18—C19—H19120.5
C2—C3—H3A120.3N3—C20—C19124.1 (4)
C4—C3—H3A120.3N3—C20—H20117.9
O3—C4—C5122.3 (4)C19—C20—H20117.9
O3—C4—C3117.6 (4)N4—C21—C22123.1 (4)
C5—C4—C3120.1 (4)N4—C21—H21118.5
C6—C5—C4120.5 (4)C22—C21—H21118.5
C6—C5—H5119.8C21—C22—C23119.3 (4)
C4—C5—H5119.8C21—C22—H22120.3
O2—C6—C5116.5 (4)C23—C22—H22120.3
O2—C6—C1123.2 (4)C24—C23—C22117.6 (4)
C5—C6—C1120.3 (4)C24—C23—C18121.1 (4)
N1—C7—O1122.3 (3)C22—C23—C18121.3 (4)
N1—C7—C1119.5 (3)C25—C24—C23119.1 (4)
O1—C7—C1118.2 (3)C25—C24—H24120.4
N2—C8—C9123.7 (3)C23—C24—H24120.4
N2—C8—H8118.1N4—C25—C24123.3 (4)
C9—C8—H8118.1N4—C25—H25118.3
C10—C9—C14119.0 (3)C24—C25—H25118.3
O6—Mo1—O1—C786.0 (3)C2—C1—C7—N1178.8 (4)
O5—Mo1—O1—C7167.9 (3)C6—C1—C7—N12.0 (6)
O4—Mo1—O1—C733.2 (4)C2—C1—C7—O13.3 (5)
N2—Mo1—O1—C76.3 (3)C6—C1—C7—O1175.8 (3)
O7—Mo1—O1—C785.7 (3)N1—N2—C8—C9177.8 (3)
O6—Mo1—O4—C1478.0 (4)Mo1—N2—C8—C99.0 (5)
O5—Mo1—O4—C14174.3 (4)N2—C8—C9—C10178.8 (4)
O1—Mo1—O4—C1440.0 (5)N2—C8—C9—C141.9 (6)
N2—Mo1—O4—C1414.3 (4)C14—C9—C10—C110.9 (5)
O7—Mo1—O4—C1491.8 (4)C8—C9—C10—C11176.1 (3)
O6—Mo1—O7—C15164.6 (6)C9—C10—C11—C120.7 (6)
O5—Mo1—O7—C1511.1 (3)C9—C10—C11—Cl1178.2 (3)
O4—Mo1—O7—C1591.5 (3)C10—C11—C12—C130.0 (6)
O1—Mo1—O7—C15111.2 (3)Cl1—C11—C12—C13179.0 (3)
N2—Mo1—O7—C15174.9 (3)C11—C12—C13—C140.6 (6)
C7—N1—N2—C8178.9 (3)Mo1—O4—C14—C13170.9 (3)
C7—N1—N2—Mo14.8 (4)Mo1—O4—C14—C99.5 (6)
O6—Mo1—N2—C885.6 (3)C12—C13—C14—O4179.3 (3)
O5—Mo1—N2—C8115.6 (4)C12—C13—C14—C90.4 (6)
O4—Mo1—N2—C813.5 (3)C10—C9—C14—O4180.0 (3)
O1—Mo1—N2—C8179.2 (4)C8—C9—C14—O43.2 (6)
O7—Mo1—N2—C898.1 (3)C10—C9—C14—C130.3 (5)
O6—Mo1—N2—N187.7 (3)C8—C9—C14—C13176.4 (3)
O5—Mo1—N2—N171.1 (4)C20—N3—C16—C170.9 (6)
O4—Mo1—N2—N1173.2 (3)N3—C16—C17—C180.4 (6)
O1—Mo1—N2—N16.0 (2)C16—C17—C18—C192.1 (6)
O7—Mo1—N2—N188.7 (2)C16—C17—C18—C23178.4 (4)
C6—C1—C2—C31.4 (6)C17—C18—C19—C202.6 (6)
C7—C1—C2—C3177.8 (4)C23—C18—C19—C20178.0 (4)
C1—C2—C3—C41.8 (6)C16—N3—C20—C190.4 (7)
C2—C3—C4—O3179.2 (4)C18—C19—C20—N31.4 (8)
C2—C3—C4—C51.1 (7)C25—N4—C21—C220.3 (6)
O3—C4—C5—C6178.0 (4)N4—C21—C22—C231.0 (6)
C3—C4—C5—C60.0 (7)C21—C22—C23—C240.8 (6)
C4—C5—C6—O2177.9 (4)C21—C22—C23—C18178.6 (4)
C4—C5—C6—C10.4 (6)C19—C18—C23—C2437.6 (6)
C2—C1—C6—O2178.5 (4)C17—C18—C23—C24141.8 (4)
C7—C1—C6—O20.7 (6)C19—C18—C23—C22141.7 (4)
C2—C1—C6—C50.2 (6)C17—C18—C23—C2238.9 (6)
C7—C1—C6—C5178.9 (4)C22—C23—C24—C250.1 (6)
N2—N1—C7—O10.5 (5)C18—C23—C24—C25179.4 (4)
N2—N1—C7—C1178.2 (3)C21—N4—C25—C240.6 (6)
Mo1—O1—C7—N16.3 (5)C23—C24—C25—N40.8 (6)
Mo1—O1—C7—C1175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.84 (1)1.85 (3)2.600 (4)147 (6)
O3—H3···N30.84 (1)1.92 (2)2.741 (5)166 (6)
O7—H7···N4i0.84 (1)1.84 (1)2.679 (4)175 (6)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo(C14H9ClN2O4)O2(CH4O)]·C10H8N2
Mr620.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.9575 (3), 7.4541 (4), 47.197 (2)
β (°) 92.0073 (6)
V3)2446.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
29717, 5604, 5408
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.23
No. of reflections5604
No. of parameters356
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 1.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.84 (1)1.85 (3)2.600 (4)147 (6)
O3—H3···N30.84 (1)1.92 (2)2.741 (5)166 (6)
O7—H7···N4i0.84 (1)1.84 (1)2.679 (4)175 (6)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (grant Nos. RG020/09AFR, PS378/2010B) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.  CSD CrossRef CAS Google Scholar
First citationPan, F.-Y. & Yang, J.-G. (2005). Z. Kristallogr. New Cryst. Struct. 220, 517–518.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds