organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[4-(1H-Imidazol-1-yl)phen­yl]-2H-tetra­zole dihydrate

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, People's Republic of China
*Correspondence e-mail: tiandamin2009@163.com

(Received 21 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, C10H8N6·2H2O, the central aromatic ring makes dihedral angles of 23.59 (15) and 16.99 (16)° with the terminal imidazole and tetra­zole rings, respectively, which are themselves almost coplanar [dihedral angle = 6.61 (18)°]. Two H atoms of the two water mol­ecules are half occupied. In the crystal packing, weak inter­molecular O—H⋯N, O—H⋯O and N—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances of 3.73 (4) Å between benzene rings and 3.66 (3) Å between imidazole and tetra­zole rings] are observed.

Related literature

For the biological activity of imidazole derivatives, see: Reichardt et al. (1992[Reichardt, B. A., Belyavtseva, L. M. & Kulikova, O. G. (1992). Bull. Exp. Biol. Med. 113, 506-508.])

[Scheme 1]

Experimental

Crystal data
  • C10H8N6·2H2O

  • Mr = 248.26

  • Triclinic, [P \overline 1]

  • a = 7.4300 (7) Å

  • b = 8.2285 (9) Å

  • c = 10.2047 (11) Å

  • α = 97.011 (1)°

  • β = 90.813 (1)°

  • γ = 113.449 (2)°

  • V = 566.74 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.38 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.983

  • 2913 measured reflections

  • 1953 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.243

  • S = 1.05

  • 1953 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯N2i 0.85 2.50 3.235 (7) 146
O2—H2D⋯N3i 0.85 1.98 2.823 (7) 172
O2—H2C⋯O1ii 0.85 2.15 2.994 (9) 170
O2—H2A⋯O1 0.85 1.92 2.629 (9) 141
O1—H1D⋯O2ii 0.85 2.55 2.994 (9) 114
O1—H1D⋯O2 0.85 1.78 2.629 (9) 175
O1—H1C⋯O1iii 0.85 1.96 2.806 (11) 175
O1—H1A⋯N1 0.85 1.99 2.790 (5) 157
N2—H2⋯N6iv 0.86 1.90 2.758 (5) 174
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z-1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole derivatives possessing the biologically important imdidazole ring, have been studied in terms of their biological activities (Reichardt et al., 1992). Inspired by this, we focus on the studies of imidazole derivatives Recently, we have obtain a new crystal structure of imidazole derivative (1-tetrazole-4-imidazole-benzene), which is crystallized by the slow evaporation of ethonal sovlent at room temperaure.

As shown in Fig.1, the title molecule crystallizes as a neutral, with two terminal imidazole and tetrazole rings almost coplanar with the dihedral angle of 6.61 (18) °. They makes dihedral angles of 23.59 (15) ° and 16.99 (16) ° with the central aromatic ring. It is noted that there are two types of π-π stacking interactions: one occurs between parallel benzene rings with centroid-centroid distances of 3.73 (4) Å; the other occurs between the imidazole and tetrazole rings with centroid-centroid distances of 3.66 (3) Å. Thus, A wide range of hydrogen bonds (O—H···N, O—H···O and N—H···N) and π-π stacking interactions contribute to the formation of the supramolecular network.

Related literature top

For the biological activity of imidazole derivatives, see: Reichardt et al. (1992)

Experimental top

1-tetrazole-4-imidazole-benzene(0.1 g, 0.4 mmol) was dissolved in ethonal (20 ml) and the solution was left to evaporate slowly at room temperature. After a week, colourless crystals suitable for X-ray analysis were obtained.

Refinement top

Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O). Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5 Ueq(C, N). H atoms of the water molecule were located in a difference Fourier map and refined as riding with an O—H distance restraint of 0.84 (1) Å, with Uiso(H) = 1.5 Ueq. two hydgrogen atoms from two water molecules are half ocuppied and split into two atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids
5-[4-(1H-Imidazol-1-yl)phenyl]-2H-tetrazole dihydrate top
Crystal data top
C10H8N6·2H2OZ = 2
Mr = 248.26F(000) = 260
Triclinic, P1Dx = 1.455 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4300 (7) ÅCell parameters from 1702 reflections
b = 8.2285 (9) Åθ = 2.5–25.9°
c = 10.2047 (11) ŵ = 0.11 mm1
α = 97.011 (1)°T = 298 K
β = 90.813 (1)°Block, colorless
γ = 113.449 (2)°0.38 × 0.17 × 0.16 mm
V = 566.74 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1953 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.960, Tmax = 0.983k = 99
2913 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1194P)2 + 0.5477P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1953 reflectionsΔρmax = 0.40 e Å3
164 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.13 (2)
Crystal data top
C10H8N6·2H2Oγ = 113.449 (2)°
Mr = 248.26V = 566.74 (10) Å3
Triclinic, P1Z = 2
a = 7.4300 (7) ÅMo Kα radiation
b = 8.2285 (9) ŵ = 0.11 mm1
c = 10.2047 (11) ÅT = 298 K
α = 97.011 (1)°0.38 × 0.17 × 0.16 mm
β = 90.813 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1953 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1199 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.983Rint = 0.024
2913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.243H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
1953 reflectionsΔρmin = 0.51 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2591 (5)0.1994 (4)0.1928 (3)0.0420 (9)
N20.2495 (6)0.0363 (4)0.1481 (3)0.0483 (10)
H20.25610.00080.06650.058*
N30.2288 (6)0.0589 (5)0.2440 (3)0.0499 (10)
N40.2239 (6)0.0414 (4)0.3577 (3)0.0457 (10)
N50.2568 (4)0.7806 (4)0.6934 (3)0.0329 (8)
N60.2612 (5)0.9372 (4)0.8813 (3)0.0447 (10)
O10.2945 (8)0.4108 (6)0.0073 (4)0.1116 (18)
H1A0.26500.32290.03630.134*
H1C0.41820.47050.00130.134*0.50
H1D0.24010.47950.02310.134*0.50
O20.1048 (12)0.6070 (9)0.0820 (6)0.183 (3)
H2A0.20780.59410.05760.220*0.50
H2C0.01110.58940.05480.220*0.50
H2D0.15330.70670.13220.220*
C10.2426 (5)0.1985 (5)0.3235 (3)0.0320 (9)
C20.2436 (5)0.3498 (5)0.4159 (3)0.0304 (9)
C30.3121 (6)0.5229 (5)0.3835 (3)0.0377 (10)
H30.35560.54380.29970.045*
C40.3163 (6)0.6638 (5)0.4737 (4)0.0367 (10)
H4A0.36320.77880.45080.044*
C50.2507 (5)0.6338 (5)0.5985 (3)0.0296 (9)
C60.1766 (6)0.4619 (5)0.6316 (3)0.0372 (10)
H60.12900.44130.71440.045*
C70.1736 (6)0.3217 (5)0.5418 (3)0.0374 (10)
H70.12450.20670.56480.045*
C80.2597 (6)0.7830 (6)0.8248 (4)0.0416 (11)
H80.26040.69110.86920.050*
C90.2610 (6)1.0379 (5)0.7849 (4)0.0436 (11)
H90.26321.15260.79770.052*
C100.2571 (6)0.9415 (5)0.6680 (4)0.0424 (11)
H100.25500.97680.58500.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.059 (2)0.0374 (19)0.0299 (17)0.0204 (17)0.0075 (15)0.0007 (14)
N20.075 (3)0.044 (2)0.0252 (17)0.027 (2)0.0086 (16)0.0097 (15)
N30.077 (3)0.043 (2)0.0345 (18)0.032 (2)0.0062 (17)0.0028 (16)
N40.070 (3)0.0366 (19)0.0340 (18)0.0267 (18)0.0090 (16)0.0007 (15)
N50.0396 (19)0.0335 (18)0.0248 (16)0.0156 (15)0.0047 (13)0.0015 (13)
N60.053 (2)0.045 (2)0.0346 (18)0.0218 (18)0.0061 (15)0.0048 (16)
O10.194 (5)0.088 (3)0.069 (3)0.067 (3)0.034 (3)0.033 (2)
O20.248 (9)0.142 (6)0.156 (6)0.078 (6)0.023 (6)0.004 (5)
C10.035 (2)0.036 (2)0.0244 (18)0.0141 (17)0.0037 (15)0.0017 (16)
C20.032 (2)0.036 (2)0.0239 (18)0.0159 (17)0.0013 (14)0.0017 (15)
C30.049 (3)0.041 (2)0.0230 (18)0.0178 (19)0.0084 (16)0.0051 (16)
C40.050 (3)0.028 (2)0.031 (2)0.0137 (18)0.0091 (17)0.0055 (16)
C50.033 (2)0.031 (2)0.0250 (18)0.0151 (17)0.0019 (14)0.0005 (15)
C60.050 (3)0.039 (2)0.0242 (18)0.019 (2)0.0149 (16)0.0045 (16)
C70.052 (3)0.032 (2)0.0300 (19)0.0187 (19)0.0100 (17)0.0056 (16)
C80.054 (3)0.043 (2)0.0271 (19)0.020 (2)0.0049 (17)0.0005 (17)
C90.057 (3)0.036 (2)0.040 (2)0.023 (2)0.0051 (19)0.0023 (18)
C100.061 (3)0.036 (2)0.033 (2)0.023 (2)0.0077 (18)0.0022 (17)
Geometric parameters (Å, º) top
N1—N21.337 (5)O2—H2D0.8501
N1—C11.341 (5)C1—C21.465 (5)
N2—N31.300 (5)C2—C31.393 (5)
N2—H20.8600C2—C71.403 (5)
N3—N41.350 (5)C3—C41.379 (5)
N4—C11.335 (5)C3—H30.9300
N5—C81.338 (5)C4—C51.386 (5)
N5—C101.379 (5)C4—H4A0.9300
N5—C51.438 (5)C5—C61.385 (5)
N6—C81.324 (5)C6—C71.375 (5)
N6—C91.362 (5)C6—H60.9300
O1—H1A0.8500C7—H70.9300
O1—H1C0.8500C8—H80.9300
O1—H1D0.8499C9—C101.343 (5)
O2—H2A0.8500C9—H90.9300
O2—H2C0.8500C10—H100.9300
N2—N1—C1104.1 (3)C4—C3—H3119.5
N3—N2—N1111.2 (3)C2—C3—H3119.5
N3—N2—H2124.4C3—C4—C5119.9 (3)
N1—N2—H2124.4C3—C4—H4A120.1
N2—N3—N4108.3 (3)C5—C4—H4A120.1
C1—N4—N3105.4 (3)C6—C5—C4120.0 (3)
C8—N5—C10107.3 (3)C6—C5—N5119.9 (3)
C8—N5—C5125.3 (3)C4—C5—N5120.1 (3)
C10—N5—C5127.4 (3)C7—C6—C5120.0 (3)
C8—N6—C9108.6 (3)C7—C6—H6120.0
H1A—O1—H1C110.2C5—C6—H6120.0
H1A—O1—H1D110.2C6—C7—C2120.9 (4)
H1C—O1—H1D108.5C6—C7—H7119.6
H2A—O2—H2C142.7C2—C7—H7119.6
H2A—O2—H2D101.7N6—C8—N5109.1 (3)
H2C—O2—H2D108.1N6—C8—H8125.5
N4—C1—N1111.1 (3)N5—C8—H8125.5
N4—C1—C2124.6 (3)C10—C9—N6107.5 (4)
N1—C1—C2124.3 (3)C10—C9—H9126.2
C3—C2—C7118.1 (3)N6—C9—H9126.2
C3—C2—C1122.3 (3)C9—C10—N5107.5 (3)
C7—C2—C1119.6 (3)C9—C10—H10126.2
C4—C3—C2121.0 (3)N5—C10—H10126.2
C1—N1—N2—N30.1 (5)C8—N5—C5—C623.6 (6)
N1—N2—N3—N40.1 (5)C10—N5—C5—C6155.1 (4)
N2—N3—N4—C10.0 (5)C8—N5—C5—C4157.2 (4)
N3—N4—C1—N10.1 (5)C10—N5—C5—C424.1 (6)
N3—N4—C1—C2179.5 (4)C4—C5—C6—C71.9 (6)
N2—N1—C1—N40.1 (4)N5—C5—C6—C7178.9 (3)
N2—N1—C1—C2179.5 (3)C5—C6—C7—C20.4 (6)
N4—C1—C2—C3163.4 (4)C3—C2—C7—C61.4 (6)
N1—C1—C2—C317.1 (6)C1—C2—C7—C6178.6 (4)
N4—C1—C2—C716.6 (6)C9—N6—C8—N50.5 (5)
N1—C1—C2—C7162.9 (4)C10—N5—C8—N60.2 (5)
C7—C2—C3—C41.8 (6)C5—N5—C8—N6178.7 (3)
C1—C2—C3—C4178.2 (3)C8—N6—C9—C100.7 (5)
C2—C3—C4—C50.4 (6)N6—C9—C10—N50.6 (5)
C3—C4—C5—C61.5 (6)C8—N5—C10—C90.3 (5)
C3—C4—C5—N5179.3 (3)C5—N5—C10—C9179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···N2i0.852.503.235 (7)146
O2—H2D···N3i0.851.982.823 (7)172
O2—H2C···O1ii0.852.152.994 (9)170
O2—H2A···O10.851.922.629 (9)141
O1—H1D···O2ii0.852.552.994 (9)114
O1—H1D···O20.851.782.629 (9)175
O1—H1C···O1iii0.851.962.806 (11)175
O1—H1A···N10.851.992.790 (5)157
N2—H2···N6iv0.861.902.758 (5)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC10H8N6·2H2O
Mr248.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4300 (7), 8.2285 (9), 10.2047 (11)
α, β, γ (°)97.011 (1), 90.813 (1), 113.449 (2)
V3)566.74 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.960, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
2913, 1953, 1199
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.243, 1.05
No. of reflections1953
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.51

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···N2i0.852.503.235 (7)146
O2—H2D···N3i0.851.982.823 (7)172
O2—H2C···O1ii0.852.152.994 (9)170
O2—H2A···O10.851.922.629 (9)141
O1—H1D···O2ii0.852.552.994 (9)114
O1—H1D···O20.851.782.629 (9)175
O1—H1C···O1iii0.851.962.806 (11)175
O1—H1A···N10.851.992.790 (5)157
N2—H2···N6iv0.861.902.758 (5)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z1.
 

Acknowledgements

The authors acknowledge Henan University of Urban Construction for supporting this work.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationReichardt, B. A., Belyavtseva, L. M. & Kulikova, O. G. (1992). Bull. Exp. Biol. Med. 113, 506–508.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds