organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-hy­dr­oxy­imino-1-methyl­indolin-2-one) monohydrate

aXi'an Medical University, Department of Pharmacy, Hanguang Road No. 137, Xi'an 710021, Xi'an, People's Republic of China
*Correspondence e-mail: miaoyanqing66@163.com

(Received 17 March 2011; accepted 24 April 2011; online 7 May 2011)

There are three independent 3-hy­droxy­imino-1-methyl­indolin-2-one mol­ecules and a water mol­ecule in the asymmetric unit of the title compound, 3C9H8N2O2·H2O. The crystal packing is stablized by O—H⋯O and O—H⋯Nhydrogen bonds between 3-hy­droxy­imino-1-methyl­indolin-2-one mol­ecules and the water mol­ecule and weak ππ stacking inter­actions [centroid–centroid distances in the range 3.446 (2)–3.983 (2) Å], forming a two-dimensional network.

Related literature

For the anti-bacterial, anti-virus and neuroprotective activity of indolin-2-one derivatives, see: Chen et al. (2009a[Chen, G., He, H. P., Ding, J. & Hao, X. J. (2009a). Heterocycl. Commun. 15, 355-360.],b[Chen, G., Wang, Y., Gao, S., He, H. P., Li, S. L., Zhang, J. X., Ding, J. & Hao, X. J. (2009b). J. Heterocycl. Chem. 46, 217-220.], 2010a[Chen, G., Hao, X. J., Sun, Q. Y. & Ding, J. (2010a). Chem. Pap. Chem. Zvesti, 64, 673-677.],b[Chen, G., Tang, Y., Zhang, Q. Z., Wu, Y. & Hao, X. J. (2010b). J. Chem. Crystallogr. 40, 369-372.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 3C9H8N2O2·H2O

  • Mr = 546.54

  • Triclinic, [P \overline 1]

  • a = 8.920 (3) Å

  • b = 10.811 (4) Å

  • c = 14.915 (5) Å

  • α = 91.335 (3)°

  • β = 101.013 (3)°

  • γ = 112.784 (3)°

  • V = 1294.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.36 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.986

  • 7872 measured reflections

  • 4512 independent reflections

  • 3154 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 1.05

  • 4512 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7W—H7WA⋯O6i 0.96 1.82 2.752 (3) 164
O1—H1B⋯N1ii 0.82 2.11 2.780 (3) 139
O7W—H7WB⋯O6iii 0.96 2.02 2.958 (3) 165
O7W—H7WB⋯N5iii 0.96 2.59 3.181 (3) 120
O3—H3C⋯O7W 0.82 1.78 2.579 (3) 165
O5—H5C⋯O4 0.82 2.05 2.753 (3) 144
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isatin derivatives attracted much attention related to their anti-bacterial, anti-virus and neuroprotection properties (Chen et al., 2009a; Chen et al., 2009b; Chen et al., 2010a; Chen et al.,2010b). 3-(Hydroxyimino)-1-methylindolin-2-one, a related structure, has been synthesized by a condensation reaction of N-methyl isatin and hydroxylamine. In this paper we report the X-ray crystal structure of the title compound, a related derivative of these bioactive compounds.

In the title compound, 3(C9H8N2O2), H2O, there are three independent 3-(hydroxyimino)-1-methylindolin-2-one planar molecules and a water molecule in the asymmetric unit (Fig. 1). Bond lengthas and angles are in normal ranges (Allen et al., 1087). Crystal packing is stablized by O—H···O hydrogen bonds between 3-(hydroxyimino)-1-methylindolin-2-one molecules and the water molecule and weak ππ stacking interactions (Table 2) forming a two-dimensional network (Fig. 2).

Related literature top

For the anti-bacterial, anti-virus and neuroprotective activity of indolin-2-one derivatives, see: Chen et al. (2009a,b, 2010a,b). For standard bond lengths, see Allen et al. (1987).

Experimental top

N-methyl isatin (1 mmol) was dissolved in methanol (20 ml), 10 ml me thanol solution of 1.2 mmol hydroxylamine was added dropwise, until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1), giving the title compound. 30 mg of the title compound was dissolved in 30 ml me thanol and the solution was kept at room temperature for 4 d, natural evaporation gave yellow single crystals suitable for X-ray analysis.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 drawing of the tile compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound. Dashed lines indicate hydrogen bonds.
Tris(3-hydroxyimino-1-methylindolin-2-one) monohydrate top
Crystal data top
3C9H8N2O2·H2OZ = 2
Mr = 546.54F(000) = 572
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.920 (3) ÅCell parameters from 3022 reflections
b = 10.811 (4) Åθ = 1.8–27.5°
c = 14.915 (5) ŵ = 0.10 mm1
α = 91.335 (3)°T = 296 K
β = 101.013 (3)°Block, yellow
γ = 112.784 (3)°0.36 × 0.28 × 0.25 mm
V = 1294.1 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4512 independent reflections
Radiation source: fine-focus sealed tube3154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1010
Tmin = 0.944, Tmax = 0.986k = 1212
7872 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.1735P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4512 reflectionsΔρmax = 0.26 e Å3
362 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
3C9H8N2O2·H2Oγ = 112.784 (3)°
Mr = 546.54V = 1294.1 (7) Å3
Triclinic, P1Z = 2
a = 8.920 (3) ÅMo Kα radiation
b = 10.811 (4) ŵ = 0.10 mm1
c = 14.915 (5) ÅT = 296 K
α = 91.335 (3)°0.36 × 0.28 × 0.25 mm
β = 101.013 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4512 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
3154 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.986Rint = 0.024
7872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4512 reflectionsΔρmin = 0.21 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0271 (3)0.0706 (3)0.09769 (15)0.0623 (7)
H1C0.97740.00600.09080.093*
H1D0.95270.15390.06140.093*
H1E1.13020.03660.07740.093*
C21.1891 (3)0.2589 (2)0.18264 (15)0.0521 (6)
H2A1.18520.25680.12000.063*
C31.2550 (3)0.3391 (2)0.23265 (16)0.0574 (6)
H3A1.29590.39190.20300.069*
C41.2614 (3)0.3426 (2)0.32544 (16)0.0557 (6)
H4A1.30740.39670.35760.067*
C51.1999 (3)0.2663 (2)0.37148 (15)0.0478 (5)
H5A1.20320.26940.43410.057*
C61.0575 (2)0.0964 (2)0.34600 (13)0.0407 (5)
C71.0105 (3)0.0384 (2)0.25993 (14)0.0448 (5)
C81.1296 (2)0.18248 (19)0.22847 (13)0.0399 (5)
C91.1338 (2)0.18576 (19)0.32271 (13)0.0386 (5)
C100.8968 (3)0.2792 (3)0.09247 (17)0.0675 (7)
H10A0.88650.28120.02730.101*
H10B0.82900.19060.10500.101*
H10C1.01110.30120.12150.101*
C110.7880 (3)0.4583 (2)0.07539 (15)0.0517 (6)
C120.7441 (3)0.5409 (2)0.13851 (16)0.0500 (6)
C130.7619 (3)0.5382 (2)0.31557 (18)0.0624 (7)
H13A0.72030.60350.32350.075*
C140.8102 (3)0.4762 (3)0.38937 (18)0.0704 (7)
H14A0.80170.50100.44770.084*
C150.8700 (3)0.3796 (3)0.37811 (17)0.0649 (7)
H15A0.90100.33990.42910.078*
C160.8857 (3)0.3390 (2)0.29342 (15)0.0536 (6)
H16A0.92630.27300.28610.064*
C170.7775 (3)0.5000 (2)0.22938 (15)0.0476 (5)
C180.8386 (2)0.4006 (2)0.22021 (14)0.0437 (5)
C190.5818 (3)0.0036 (2)0.3080 (2)0.0684 (7)
H19A0.60850.03360.25720.103*
H19B0.50850.06820.33550.103*
H19C0.68220.05400.35280.103*
C200.4430 (3)0.1584 (3)0.42273 (17)0.0636 (7)
H20A0.48500.10370.45700.076*
C210.3780 (4)0.2375 (3)0.4624 (2)0.0796 (8)
H21A0.37650.23600.52450.096*
C220.3155 (4)0.3182 (3)0.4117 (2)0.0831 (9)
H22A0.27120.36960.43990.100*
C230.3178 (3)0.3241 (2)0.31945 (18)0.0641 (7)
H23A0.27650.37960.28560.077*
C240.4038 (3)0.2266 (2)0.18659 (15)0.0457 (5)
C250.4784 (3)0.1244 (2)0.18822 (17)0.0513 (6)
C260.4435 (3)0.1635 (2)0.33104 (15)0.0469 (5)
C270.3819 (3)0.2464 (2)0.27895 (15)0.0459 (5)
N11.0252 (2)0.05933 (18)0.41960 (11)0.0495 (5)
N21.0588 (2)0.09364 (18)0.19319 (11)0.0463 (4)
N30.6924 (2)0.6279 (2)0.10394 (15)0.0642 (6)
N40.8424 (2)0.37665 (18)0.12804 (12)0.0487 (5)
N50.3804 (2)0.27722 (18)0.11122 (13)0.0546 (5)
N60.5003 (2)0.09227 (17)0.27555 (13)0.0506 (5)
O11.0755 (2)0.11735 (17)0.49500 (10)0.0646 (5)
H1B1.05260.09080.54040.097*
O20.9441 (2)0.04077 (16)0.25021 (11)0.0622 (5)
O30.6579 (2)0.69901 (18)0.16874 (15)0.0858 (6)
H3C0.62970.75640.14480.129*
O40.7795 (2)0.46187 (18)0.00736 (11)0.0718 (5)
O50.3164 (2)0.37245 (16)0.12083 (12)0.0681 (5)
H5C0.30170.40300.07160.102*
O60.5143 (2)0.07832 (18)0.12371 (13)0.0762 (5)
O7W0.5777 (4)0.8629 (2)0.06685 (15)0.1353 (11)
H7WA0.56130.93410.09770.162*
H7WB0.55200.86830.00190.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0753 (17)0.0799 (17)0.0359 (12)0.0362 (15)0.0094 (11)0.0137 (12)
C20.0630 (15)0.0597 (14)0.0399 (12)0.0292 (12)0.0159 (11)0.0008 (10)
C30.0720 (16)0.0551 (14)0.0577 (15)0.0365 (13)0.0197 (12)0.0009 (11)
C40.0688 (16)0.0486 (13)0.0587 (15)0.0329 (12)0.0139 (12)0.0087 (11)
C50.0580 (14)0.0482 (12)0.0416 (12)0.0246 (11)0.0131 (10)0.0086 (10)
C60.0415 (12)0.0465 (12)0.0363 (11)0.0193 (10)0.0104 (9)0.0000 (9)
C70.0463 (12)0.0488 (12)0.0417 (12)0.0225 (11)0.0074 (9)0.0036 (10)
C80.0424 (12)0.0422 (11)0.0360 (11)0.0177 (10)0.0090 (9)0.0020 (9)
C90.0412 (11)0.0415 (11)0.0334 (11)0.0163 (10)0.0091 (9)0.0008 (9)
C100.0843 (18)0.0856 (18)0.0566 (15)0.0555 (16)0.0227 (13)0.0133 (13)
C110.0531 (14)0.0563 (14)0.0443 (14)0.0219 (12)0.0067 (11)0.0123 (11)
C120.0447 (13)0.0442 (12)0.0598 (15)0.0175 (11)0.0082 (11)0.0106 (11)
C130.0627 (16)0.0547 (15)0.0646 (17)0.0164 (13)0.0189 (13)0.0066 (12)
C140.0768 (18)0.0761 (18)0.0458 (15)0.0139 (15)0.0215 (13)0.0022 (13)
C150.0686 (17)0.0704 (17)0.0432 (14)0.0146 (14)0.0108 (12)0.0113 (12)
C160.0557 (14)0.0573 (14)0.0456 (13)0.0199 (12)0.0105 (11)0.0137 (11)
C170.0433 (12)0.0428 (12)0.0503 (13)0.0101 (10)0.0106 (10)0.0029 (10)
C180.0409 (12)0.0470 (12)0.0389 (12)0.0133 (10)0.0080 (9)0.0050 (9)
C190.0577 (16)0.0619 (16)0.096 (2)0.0363 (14)0.0116 (14)0.0238 (14)
C200.0660 (16)0.0654 (16)0.0571 (16)0.0255 (14)0.0082 (13)0.0179 (13)
C210.095 (2)0.087 (2)0.0555 (16)0.0337 (18)0.0210 (15)0.0055 (15)
C220.106 (2)0.088 (2)0.071 (2)0.0529 (19)0.0263 (17)0.0007 (16)
C230.0730 (17)0.0614 (15)0.0682 (17)0.0383 (14)0.0144 (13)0.0039 (13)
C240.0420 (12)0.0418 (12)0.0513 (13)0.0170 (10)0.0047 (10)0.0055 (10)
C250.0476 (13)0.0466 (13)0.0616 (15)0.0211 (11)0.0114 (11)0.0063 (11)
C260.0390 (12)0.0431 (12)0.0544 (14)0.0141 (10)0.0052 (10)0.0080 (10)
C270.0440 (12)0.0419 (12)0.0502 (13)0.0177 (10)0.0055 (10)0.0041 (10)
N10.0602 (12)0.0630 (12)0.0351 (10)0.0348 (10)0.0112 (8)0.0044 (8)
N20.0581 (11)0.0580 (11)0.0315 (9)0.0319 (10)0.0103 (8)0.0076 (8)
N30.0594 (13)0.0536 (12)0.0829 (16)0.0268 (11)0.0128 (11)0.0129 (11)
N40.0591 (12)0.0560 (11)0.0382 (10)0.0301 (10)0.0109 (8)0.0094 (8)
N50.0518 (12)0.0548 (12)0.0553 (12)0.0234 (10)0.0024 (9)0.0088 (9)
N60.0450 (11)0.0459 (10)0.0654 (13)0.0240 (9)0.0090 (9)0.0129 (9)
O10.0917 (13)0.0899 (12)0.0370 (9)0.0590 (11)0.0210 (8)0.0126 (8)
O20.0709 (11)0.0703 (11)0.0625 (11)0.0475 (10)0.0118 (8)0.0094 (8)
O30.0981 (15)0.0696 (12)0.1084 (16)0.0525 (12)0.0243 (12)0.0113 (11)
O40.0914 (13)0.0919 (13)0.0443 (10)0.0493 (11)0.0135 (9)0.0213 (9)
O50.0724 (12)0.0692 (11)0.0749 (12)0.0437 (10)0.0087 (9)0.0267 (9)
O60.0983 (14)0.0796 (12)0.0757 (12)0.0561 (11)0.0316 (11)0.0080 (10)
O7W0.260 (3)0.135 (2)0.0710 (14)0.153 (2)0.0142 (17)0.0009 (13)
Geometric parameters (Å, º) top
C1—N21.445 (3)C15—C161.377 (3)
C1—H1C0.9600C15—H15A0.9300
C1—H1D0.9600C16—C181.374 (3)
C1—H1E0.9600C16—H16A0.9300
C2—C81.372 (3)C17—C181.396 (3)
C2—C31.383 (3)C18—N41.402 (3)
C2—H2A0.9300C19—N61.452 (3)
C3—C41.376 (3)C19—H19A0.9600
C3—H3A0.9300C19—H19B0.9600
C4—C51.385 (3)C19—H19C0.9600
C4—H4A0.9300C20—C261.371 (3)
C5—C91.378 (3)C20—C211.381 (4)
C5—H5A0.9300C20—H20A0.9300
C6—N11.280 (2)C21—C221.375 (4)
C6—C91.449 (3)C21—H21A0.9300
C6—C71.501 (3)C22—C231.383 (4)
C7—O21.212 (2)C22—H22A0.9300
C7—N21.367 (3)C23—C271.370 (3)
C8—N21.402 (2)C23—H23A0.9300
C8—C91.401 (3)C24—N51.279 (3)
C10—N41.447 (3)C24—C271.450 (3)
C10—H10A0.9600C24—C251.492 (3)
C10—H10B0.9600C25—O61.223 (3)
C10—H10C0.9600C25—N61.354 (3)
C11—O41.224 (3)C26—N61.402 (3)
C11—N41.360 (3)C26—C271.400 (3)
C11—C121.487 (3)N1—O11.385 (2)
C12—N31.277 (3)N3—O31.372 (3)
C12—C171.448 (3)N5—O51.373 (2)
C13—C141.387 (4)O1—H1B0.8200
C13—C171.389 (3)O3—H3C0.8200
C13—H13A0.9300O5—H5C0.8200
C14—C151.365 (4)O7W—H7WA0.9600
C14—H14A0.9300O7W—H7WB0.9600
N2—C1—H1C109.5C18—C16—H16A121.5
N2—C1—H1D109.5C13—C17—C18119.1 (2)
H1C—C1—H1D109.5C13—C17—C12134.5 (2)
N2—C1—H1E109.5C18—C17—C12106.35 (18)
H1C—C1—H1E109.5C16—C18—C17122.6 (2)
H1D—C1—H1E109.5C16—C18—N4127.6 (2)
C8—C2—C3117.9 (2)C17—C18—N4109.79 (18)
C8—C2—H2A121.1N6—C19—H19A109.5
C3—C2—H2A121.1N6—C19—H19B109.5
C4—C3—C2121.4 (2)H19A—C19—H19B109.5
C4—C3—H3A119.3N6—C19—H19C109.5
C2—C3—H3A119.3H19A—C19—H19C109.5
C3—C4—C5120.7 (2)H19B—C19—H19C109.5
C3—C4—H4A119.6C26—C20—C21117.7 (2)
C5—C4—H4A119.6C26—C20—H20A121.2
C9—C5—C4118.7 (2)C21—C20—H20A121.2
C9—C5—H5A120.7C22—C21—C20121.2 (3)
C4—C5—H5A120.7C22—C21—H21A119.4
N1—C6—C9135.00 (19)C20—C21—H21A119.4
N1—C6—C7117.56 (17)C21—C22—C23120.9 (3)
C9—C6—C7107.45 (16)C21—C22—H22A119.5
O2—C7—N2126.5 (2)C23—C22—H22A119.5
O2—C7—C6128.18 (19)C27—C23—C22118.7 (2)
N2—C7—C6105.36 (16)C27—C23—H23A120.7
C2—C8—N2128.31 (19)C22—C23—H23A120.7
C2—C8—C9121.50 (19)N5—C24—C27135.82 (19)
N2—C8—C9110.19 (16)N5—C24—C25117.7 (2)
C5—C9—C8119.85 (17)C27—C24—C25106.41 (18)
C5—C9—C6134.28 (19)O6—C25—N6126.0 (2)
C8—C9—C6105.86 (17)O6—C25—C24127.1 (2)
N4—C10—H10A109.5N6—C25—C24106.86 (19)
N4—C10—H10B109.5C20—C26—N6128.3 (2)
H10A—C10—H10B109.5C20—C26—C27121.6 (2)
N4—C10—H10C109.5N6—C26—C27110.07 (19)
H10A—C10—H10C109.5C23—C27—C26119.9 (2)
H10B—C10—H10C109.5C23—C27—C24133.9 (2)
O4—C11—N4125.8 (2)C26—C27—C24106.19 (18)
O4—C11—C12127.9 (2)C6—N1—O1112.81 (16)
N4—C11—C12106.29 (18)C7—N2—C8111.12 (16)
N3—C12—C17135.8 (2)C7—N2—C1123.47 (17)
N3—C12—C11117.3 (2)C8—N2—C1125.22 (17)
C17—C12—C11106.83 (18)C12—N3—O3112.1 (2)
C14—C13—C17118.1 (2)C11—N4—C18110.72 (17)
C14—C13—H13A121.0C11—N4—C10123.89 (18)
C17—C13—H13A121.0C18—N4—C10125.39 (18)
C15—C14—C13121.3 (2)C24—N5—O5111.20 (18)
C15—C14—H14A119.3C25—N6—C26110.46 (17)
C13—C14—H14A119.3C25—N6—C19124.4 (2)
C14—C15—C16121.9 (2)C26—N6—C19125.0 (2)
C14—C15—H15A119.1N1—O1—H1B109.5
C16—C15—H15A119.1N3—O3—H3C109.5
C15—C16—C18117.0 (2)N5—O5—H5C109.5
C15—C16—H16A121.5H7WA—O7W—H7WB108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7W—H7WA···O6i0.961.822.752 (3)164
O1—H1B···N1ii0.822.112.780 (3)139
O7W—H7WB···O6iii0.962.022.958 (3)165
O7W—H7WB···N5iii0.962.593.181 (3)120
O3—H3C···O7W0.821.782.579 (3)165
O5—H5C···O40.822.052.753 (3)144
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula3C9H8N2O2·H2O
Mr546.54
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.920 (3), 10.811 (4), 14.915 (5)
α, β, γ (°)91.335 (3), 101.013 (3), 112.784 (3)
V3)1294.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.944, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7872, 4512, 3154
Rint0.024
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 1.05
No. of reflections4512
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7W—H7WA···O6i0.961.822.752 (3)164
O1—H1B···N1ii0.822.112.780 (3)139
O7W—H7WB···O6iii0.962.022.958 (3)165
O7W—H7WB···N5iii0.962.593.181 (3)120
O3—H3C···O7W0.821.782.579 (3)165
O5—H5C···O40.822.052.753 (3)144
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+1, y+1, z.
Cg···Cg π-ring stacking interactions, Cg1,Cg2,Cg4,Cg5,Cg7,Cg8 are the centroids of rings N2/C6-C8, C2-C5,C8/C9, N4.C11-C12/C17-C18, C13-C17, N6/C24-C27, C20-C23/C27-C28 [Symmetry codes: (i) 1+x,y,z; (ii) x, -1+y, z' (iii) x, y, z; (iv) x, 1+y, z; (v) -1+x, y, z ] top
CgI···CgJCg···Cg (Å)Cg I_Perp (Å)CgJ_Perp (Å)
Cg1···Cg7i,v3.5935 (19)-3.4071 (9)3.4348 (10)
Cg1···Cg8i,v3.843 (2)-3.4274 (12)3.4274 (12)
Cg2···Cg4ii,iv3.7366 (19)3.5203 (9)-3.5798 (10)
Cg2···Cg5ii3.7181 (19)3.5255 (9)-3.5288 (10)
Cg4···Cg7iii3.983 (2)3.3212(10-3.4138 (11)
Cg5···Cg2iv3.7182 (19)-3.5288 (10)3.5255 (9)
Cg5···Cg7iii3.4456 (19)3.4415 (10)-3.4224 (10)
 

Acknowledgements

This work was supported financially by grants from the Scientific Research Plan Projects of Shaanxi Province Department of Health (2010D54), the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B19) and the Scientific Research Plan Projects of Shaanxi Education Department (09 J K709).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChen, G., Hao, X. J., Sun, Q. Y. & Ding, J. (2010a). Chem. Pap. Chem. Zvesti, 64, 673–677.  CrossRef CAS Google Scholar
First citationChen, G., He, H. P., Ding, J. & Hao, X. J. (2009a). Heterocycl. Commun. 15, 355–360.  CrossRef CAS Google Scholar
First citationChen, G., Tang, Y., Zhang, Q. Z., Wu, Y. & Hao, X. J. (2010b). J. Chem. Crystallogr. 40, 369–372.  CrossRef CAS Google Scholar
First citationChen, G., Wang, Y., Gao, S., He, H. P., Li, S. L., Zhang, J. X., Ding, J. & Hao, X. J. (2009b). J. Heterocycl. Chem. 46, 217–220.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds