metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m796-m797

Bis(μ-2-{[2-(1,3-benzo­thia­zol-2-yl)hydrazinyl­­idene]meth­yl}-6-meth­­oxy­phenolato)bis­­[dinitratodysprosium(III)] methanol disolvate

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China, and bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
*Correspondence e-mail: cezlliu@imu.edu.cn

(Received 23 March 2011; accepted 19 May 2011; online 25 May 2011)

In the centrosymmetric dinuclear title compound, [Dy2(C15H12N3O2S)2(NO3)4]·2CH3OH, the two DyIII atoms are coordinated by two deprotonated 2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenol ligands and four nitrate ions, all of which are chelating. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds and weak O—H⋯O inter­actions, forming a two-dimensional network parallel to (010).

Related literature

For applications of dysprosium complexes in data storage and processing, see: Lin et al. (2010[Lin, S.-Y., Guo, Y.-N., Xu, G.-F. & Tang, J.-K. (2010). Chin. J. Appl. Chem. 27, 1365-1371.]). For the preparation of the 2-{[2-(1,3-benzothia­zol-2-yl)hydrazinyl­idene]meth­yl}-6-meth­oxy­phenol ligand, see: Patil et al. (2009[Patil, S. A., Weng, C.-M., Huang, P.-C. & Hong, F.-E. (2009). Tetrahedron, 65, 2889-2897.]). For related structures, see: Lin & Hong (2009[Lin, Y.-C. & Hong, F.-E. (2009). Acta Cryst. E65, m1077.]); Lin et al. (2008[Lin, P.-H., Burchell, T. J., Clérac, R. & Murugesu, M. (2008). Angew. Chem. Int. Ed. 47, 8848-8851.]); Xu et al. (2010[Xu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J.-K., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506-1508.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C15H12N3O2S)2(NO3)4]·2CH4O

  • Mr = 1233.82

  • Triclinic, [P \overline 1]

  • a = 9.6191 (6) Å

  • b = 10.1002 (7) Å

  • c = 11.6151 (8) Å

  • α = 112.045 (1)°

  • β = 105.065 (1)°

  • γ = 93.154 (1)°

  • V = 995.23 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 159 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.631, Tmax = 0.676

  • 5083 measured reflections

  • 3502 independent reflections

  • 3162 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.07

  • 3502 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O2 2.280 (3)
Dy1—O2i 2.374 (2)
Dy1—O1i 2.394 (3)
Dy1—O4 2.422 (3)
Dy1—O3 2.433 (3)
Dy1—N4 2.461 (3)
Dy1—O6 2.471 (3)
Dy1—N5 2.494 (3)
Dy1—O8 2.530 (3)
Symmetry code: (i) -x+1, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O3ii 0.84 2.64 3.206 (4) 126
O9—H9A⋯O8iii 0.84 2.24 3.049 (4) 161
N9—H9⋯O9iv 0.88 1.91 2.751 (4) 160
Symmetry codes: (ii) x, y, z-1; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dysprosium complexes continue to attract significant attention because of their potential applications in data storage and processing (Lin et al. 2010). In order to explore the relationship between these applications and their structures, a series of dinuclear dysprosium coordination compounds have been structural characterized (Lin et al. 2008; Xu et al. 2010). In support of our continued research in this area, we report here a new dinuclear dysprosium complex, [Dy2(C15H12N3O2S)2(NO3)4].CH3OH.

In the title compound the asymmetric unit consists of one DyIII ion, one deprotonated 2-[(benzothiazol-2-yl)hydrazonomethyl]-6-methoxyphenol ligand and two nitrate ions (Fig. 1). The centrosymmetric dinuclear complex is composed of two nine-coordinate DyIII ions bridged by phenoxo groups (O2, O2a) from the ligands with a Dy1—O2—Dy1a angle of 106.041 (100) ° and a Dy···Dy distance equal to 3.7184 (3) Å. The central core Dy2O2 appears to be nearly rhombic with the two Dy—O2 distances being 2.37 Å and 2.28 Å, respectively. Crystal packing is stabiized by N—H···O hydrogen bonds and weak O—H···O intermolecular interactions forming a two-dimensional network (Fig. 2).

Related literature top

For applications of dysprosium complexes in data storage and processing, see: Lin et al. (2010). For the preparation of the 2-[(benzothiazol-2-yl)hydrazonomethyl]-6-methoxyphenol ligand, see: Patil et al. (2009). For related structures, see: Lin & Hong (2009); Lin et al. (2008); Xu et al. (2010).

Experimental top

A mixture of Dy(NO3)3.6H2O (0.1 mmol), 2-hydrazino benzothiazole (0.1 mmol), 2-hydroxy-3-methoxy-5-((4-methoxyphenyl)diazenyl)benzaldehyde (0.1 mmol), methanol (10 ml), Et3N (0.3 mmol) was sealed in a glass vessel (20 ml, capacity) and the solution was heated at 363 K for 1 h under autogenous pressure. After the mixture was allowed to cool to room temperature, yellow block single crystals were isolated from the vessel.

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å), with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006) and XP (Siemens, 1994); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Bis(µ-2-{[2-(1,3-benzothiazol-2-yl)hydrazinylidene]methyl}-6- methoxyphenolato)bis[dinitratodysprosium(III)] methanol disolvate top
Crystal data top
[Dy2(C15H12N3O2S)2(NO3)4]·2CH4OZ = 1
Mr = 1233.82F(000) = 602
Triclinic, P1Dx = 2.059 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6191 (6) ÅCell parameters from 3776 reflections
b = 10.1002 (7) Åθ = 2.3–25.1°
c = 11.6151 (8) ŵ = 3.92 mm1
α = 112.045 (1)°T = 159 K
β = 105.065 (1)°Block, yellow
γ = 93.154 (1)°0.20 × 0.10 × 0.10 mm
V = 995.23 (12) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3502 independent reflections
Radiation source: rotating anode3162 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.016
Detector resolution: 7.31 pixels mm-1θmax = 25.1°, θmin = 2.0°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 127
Tmin = 0.631, Tmax = 0.676l = 1313
5083 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
3502 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Dy2(C15H12N3O2S)2(NO3)4]·2CH4Oγ = 93.154 (1)°
Mr = 1233.82V = 995.23 (12) Å3
Triclinic, P1Z = 1
a = 9.6191 (6) ÅMo Kα radiation
b = 10.1002 (7) ŵ = 3.92 mm1
c = 11.6151 (8) ÅT = 159 K
α = 112.045 (1)°0.20 × 0.10 × 0.10 mm
β = 105.065 (1)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3502 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3162 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.676Rint = 0.016
5083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.07Δρmax = 0.83 e Å3
3502 reflectionsΔρmin = 0.51 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5488 (5)0.1481 (6)1.3423 (4)0.0419 (12)
H1A0.48290.09891.38950.063*
H1B0.64880.09461.38760.063*
H1C0.54530.24681.33870.063*
C20.3550 (4)0.2085 (4)1.1420 (4)0.0262 (9)
C30.2744 (5)0.3007 (5)1.1704 (4)0.0328 (10)
H30.31940.33231.23630.039*
C40.1277 (5)0.3481 (5)1.1034 (4)0.0349 (10)
H40.07110.41431.12080.042*
C50.0654 (4)0.2974 (5)1.0113 (4)0.0314 (10)
H50.03650.32630.96770.038*
C60.1455 (4)0.2054 (4)0.9789 (4)0.0259 (9)
C70.2972 (4)0.1615 (4)1.0421 (4)0.0237 (8)
C80.0613 (4)0.1613 (5)0.8805 (4)0.0308 (10)
H80.03950.20250.84230.037*
C90.0364 (4)0.0701 (5)0.7244 (4)0.0285 (9)
C100.1564 (4)0.2767 (4)0.7467 (4)0.0265 (9)
C110.2636 (4)0.3998 (5)0.7988 (4)0.0309 (10)
H110.35300.40750.86170.037*
C120.2378 (5)0.5099 (5)0.7573 (4)0.0335 (10)
H120.31120.59300.79040.040*
C130.1059 (5)0.5011 (5)0.6680 (4)0.0354 (10)
H130.09020.57910.64210.042*
C140.0026 (5)0.3818 (5)0.6163 (4)0.0335 (10)
H140.09300.37640.55570.040*
C150.0251 (4)0.2701 (5)0.6558 (4)0.0284 (9)
C160.2951 (6)0.3287 (6)0.4354 (5)0.0540 (14)
H16A0.25850.38620.38580.081*
H16C0.39780.36820.48620.081*
H16B0.23740.33260.49450.081*
Dy10.358298 (18)0.05304 (2)0.890365 (17)0.02346 (8)
N40.1097 (3)0.0726 (4)0.8405 (3)0.0283 (8)
N50.1632 (3)0.1587 (4)0.7829 (3)0.0274 (8)
N60.3542 (4)0.3093 (4)1.1063 (3)0.0345 (9)
N70.3601 (4)0.1898 (4)0.6517 (3)0.0327 (8)
N90.0038 (3)0.0478 (4)0.7456 (3)0.0327 (8)
H90.08020.10700.70200.039*
O10.5034 (3)0.1543 (3)1.2102 (3)0.0291 (6)
O20.3863 (3)0.0823 (3)1.0113 (2)0.0249 (6)
O30.2717 (3)0.1897 (3)1.0724 (3)0.0340 (7)
O40.4335 (3)0.3079 (3)1.0330 (3)0.0337 (7)
O50.3585 (4)0.4152 (4)1.2012 (3)0.0574 (10)
O60.2613 (3)0.1127 (3)0.6575 (3)0.0371 (7)
O70.3620 (4)0.2850 (4)0.5512 (3)0.0580 (10)
O80.4579 (3)0.1600 (3)0.7589 (3)0.0416 (8)
O90.2828 (3)0.1836 (4)0.3486 (3)0.0452 (8)
H9A0.33980.17900.30380.068*
S10.09430 (11)0.11034 (12)0.61321 (10)0.0315 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.062 (3)0.028 (2)0.002 (2)0.0030 (19)0.020 (2)
C20.021 (2)0.029 (2)0.027 (2)0.0045 (17)0.0058 (17)0.0110 (18)
C30.036 (2)0.029 (2)0.033 (2)0.006 (2)0.0075 (19)0.014 (2)
C40.033 (2)0.033 (2)0.041 (3)0.002 (2)0.011 (2)0.017 (2)
C50.022 (2)0.035 (2)0.034 (2)0.0027 (18)0.0075 (18)0.011 (2)
C60.0188 (19)0.028 (2)0.030 (2)0.0037 (17)0.0051 (17)0.0118 (18)
C70.0183 (19)0.022 (2)0.028 (2)0.0031 (16)0.0038 (16)0.0095 (18)
C80.016 (2)0.037 (3)0.033 (2)0.0030 (18)0.0006 (17)0.013 (2)
C90.019 (2)0.037 (2)0.028 (2)0.0086 (18)0.0036 (17)0.013 (2)
C100.023 (2)0.032 (2)0.024 (2)0.0070 (18)0.0049 (17)0.0117 (18)
C110.022 (2)0.039 (3)0.030 (2)0.0060 (19)0.0039 (17)0.014 (2)
C120.029 (2)0.035 (2)0.032 (2)0.003 (2)0.0046 (19)0.012 (2)
C130.039 (2)0.039 (3)0.031 (2)0.011 (2)0.006 (2)0.019 (2)
C140.031 (2)0.042 (3)0.028 (2)0.012 (2)0.0021 (19)0.019 (2)
C150.020 (2)0.038 (2)0.022 (2)0.0059 (18)0.0028 (16)0.0086 (19)
C160.043 (3)0.069 (4)0.044 (3)0.009 (3)0.011 (2)0.018 (3)
Dy10.01390 (10)0.03118 (12)0.02375 (11)0.00321 (8)0.00021 (7)0.01318 (9)
N40.0175 (16)0.033 (2)0.0301 (18)0.0005 (15)0.0019 (14)0.0156 (16)
N50.0207 (17)0.0310 (19)0.0281 (18)0.0054 (15)0.0046 (14)0.0110 (16)
N60.033 (2)0.039 (2)0.029 (2)0.0144 (18)0.0035 (17)0.0152 (19)
N70.0199 (18)0.036 (2)0.031 (2)0.0019 (16)0.0010 (15)0.0067 (18)
N90.0144 (16)0.045 (2)0.0347 (19)0.0018 (16)0.0072 (14)0.0229 (18)
O10.0195 (13)0.0415 (17)0.0277 (15)0.0034 (13)0.0010 (11)0.0199 (14)
O20.0146 (13)0.0316 (16)0.0279 (14)0.0016 (12)0.0007 (11)0.0156 (13)
O30.0291 (16)0.0430 (19)0.0312 (16)0.0091 (15)0.0063 (13)0.0177 (15)
O40.0285 (15)0.0393 (18)0.0298 (15)0.0044 (14)0.0036 (13)0.0138 (14)
O50.086 (3)0.041 (2)0.041 (2)0.021 (2)0.0250 (19)0.0073 (18)
O60.0229 (15)0.0449 (19)0.0318 (16)0.0119 (14)0.0016 (13)0.0087 (15)
O70.0373 (19)0.066 (3)0.037 (2)0.0132 (18)0.0008 (16)0.0066 (19)
O80.0351 (17)0.0463 (19)0.0321 (16)0.0152 (15)0.0033 (14)0.0117 (15)
O90.0258 (17)0.057 (2)0.046 (2)0.0010 (16)0.0079 (14)0.0163 (18)
S10.0212 (5)0.0388 (6)0.0302 (5)0.0037 (5)0.0020 (4)0.0161 (5)
Geometric parameters (Å, º) top
C1—O11.459 (5)C13—H130.9500
C1—H1A0.9800C14—C151.384 (6)
C1—H1B0.9800C14—H140.9500
C1—H1C0.9800C15—S11.752 (4)
C2—C31.364 (6)C16—O91.410 (6)
C2—O11.402 (4)C16—H16A0.9800
C2—C71.410 (5)C16—H16C0.9800
C3—C41.379 (6)C16—H16B0.9800
C3—H30.9500Dy1—O22.280 (3)
C4—C51.370 (6)Dy1—O2i2.374 (2)
C4—H40.9500Dy1—O1i2.394 (3)
C5—C61.390 (5)Dy1—O42.422 (3)
C5—H50.9500Dy1—O32.433 (3)
C6—C71.412 (5)Dy1—N42.461 (3)
C6—C81.451 (5)Dy1—O62.471 (3)
C7—O21.342 (4)Dy1—N52.494 (3)
C8—N41.270 (5)Dy1—O82.530 (3)
C8—H80.9500Dy1—Dy1i3.7184 (4)
C9—N51.320 (5)N4—N91.402 (4)
C9—N91.340 (5)N6—O51.203 (5)
C9—S11.738 (4)N6—O31.273 (5)
C10—C111.395 (6)N6—O41.279 (4)
C10—C151.399 (5)N7—O71.208 (5)
C10—N51.405 (5)N7—O61.261 (4)
C11—C121.379 (6)N7—O81.266 (4)
C11—H110.9500N9—H90.8800
C12—C131.388 (6)O1—Dy1i2.394 (3)
C12—H120.9500O2—Dy1i2.374 (2)
C13—C141.376 (6)O9—H9A0.8400
O1—C1—H1A109.5O4—Dy1—O352.63 (10)
O1—C1—H1B109.5O2—Dy1—N475.53 (10)
H1A—C1—H1B109.5O2i—Dy1—N4149.07 (10)
O1—C1—H1C109.5O1i—Dy1—N4138.80 (10)
H1A—C1—H1C109.5O4—Dy1—N4121.11 (11)
H1B—C1—H1C109.5O3—Dy1—N474.17 (11)
C3—C2—O1122.0 (4)O2—Dy1—O6108.45 (10)
C3—C2—C7123.2 (4)O2i—Dy1—O6116.45 (9)
O1—C2—C7114.8 (3)O1i—Dy1—O676.95 (10)
C2—C3—C4120.1 (4)O4—Dy1—O6141.79 (10)
C2—C3—H3120.0O3—Dy1—O6139.92 (10)
C4—C3—H3120.0N4—Dy1—O669.16 (10)
C5—C4—C3118.5 (4)O2—Dy1—N5139.17 (10)
C5—C4—H4120.8O2i—Dy1—N5144.17 (10)
C3—C4—H4120.8O1i—Dy1—N581.46 (10)
C4—C5—C6122.6 (4)O4—Dy1—N579.22 (10)
C4—C5—H5118.7O3—Dy1—N579.08 (10)
C6—C5—H5118.7N4—Dy1—N566.52 (11)
C5—C6—C7119.6 (4)O6—Dy1—N572.05 (10)
C5—C6—C8115.0 (4)O2—Dy1—O877.32 (10)
C7—C6—C8125.3 (4)O2i—Dy1—O870.22 (9)
O2—C7—C2119.8 (3)O1i—Dy1—O876.42 (10)
O2—C7—C6124.3 (3)O4—Dy1—O8140.65 (10)
C2—C7—C6115.8 (3)O3—Dy1—O8153.86 (10)
N4—C8—C6126.1 (4)N4—Dy1—O898.23 (11)
N4—C8—H8117.0O6—Dy1—O850.52 (9)
C6—C8—H8117.0N5—Dy1—O8121.51 (10)
N5—C9—N9123.9 (4)O2—Dy1—Dy1i37.86 (6)
N5—C9—S1117.3 (3)O2i—Dy1—Dy1i36.10 (6)
N9—C9—S1118.8 (3)O1i—Dy1—Dy1i103.10 (6)
C11—C10—C15119.0 (4)O4—Dy1—Dy1i92.27 (7)
C11—C10—N5125.8 (3)O3—Dy1—Dy1i90.23 (7)
C15—C10—N5115.2 (4)N4—Dy1—Dy1i113.24 (8)
C12—C11—C10118.9 (4)O6—Dy1—Dy1i118.59 (7)
C12—C11—H11120.6N5—Dy1—Dy1i169.00 (8)
C10—C11—H11120.6O8—Dy1—Dy1i69.47 (6)
C11—C12—C13120.9 (4)C8—N4—N9114.2 (3)
C11—C12—H12119.5C8—N4—Dy1131.6 (3)
C13—C12—H12119.5N9—N4—Dy1114.1 (2)
C14—C13—C12121.5 (4)C9—N5—C10109.1 (3)
C14—C13—H13119.3C9—N5—Dy1113.1 (3)
C12—C13—H13119.3C10—N5—Dy1136.6 (2)
C13—C14—C15117.4 (4)O5—N6—O3122.4 (4)
C13—C14—H14121.3O5—N6—O4122.6 (4)
C15—C14—H14121.3O3—N6—O4115.0 (3)
C14—C15—C10122.3 (4)O7—N7—O6122.5 (4)
C14—C15—S1127.6 (3)O7—N7—O8122.2 (4)
C10—C15—S1109.9 (3)O6—N7—O8115.2 (3)
O9—C16—H16A109.5C9—N9—N4117.0 (3)
O9—C16—H16C109.5C9—N9—H9121.5
H16A—C16—H16C109.5N4—N9—H9121.5
O9—C16—H16B109.5C2—O1—C1114.9 (3)
H16A—C16—H16B109.5C2—O1—Dy1i116.7 (2)
H16C—C16—H16B109.5C1—O1—Dy1i127.7 (2)
O2—Dy1—O2i73.96 (10)C7—O2—Dy1136.2 (2)
O2—Dy1—O1i139.27 (9)C7—O2—Dy1i117.7 (2)
O2i—Dy1—O1i68.12 (9)Dy1—O2—Dy1i106.04 (10)
O2—Dy1—O4109.76 (9)N6—O3—Dy195.9 (2)
O2i—Dy1—O474.78 (9)N6—O4—Dy196.3 (2)
O1i—Dy1—O474.29 (10)N7—O6—Dy198.6 (2)
O2—Dy1—O376.56 (10)N7—O8—Dy195.6 (2)
O2i—Dy1—O3103.27 (9)C16—O9—H9A109.5
O1i—Dy1—O3125.83 (10)C9—S1—C1588.36 (19)
O1—C2—C3—C4178.1 (4)C8—N4—N9—C9162.8 (4)
C7—C2—C3—C42.5 (7)Dy1—N4—N9—C920.4 (4)
C2—C3—C4—C51.7 (6)C3—C2—O1—C125.7 (5)
C3—C4—C5—C62.8 (7)C7—C2—O1—C1154.9 (4)
C4—C5—C6—C70.2 (6)C3—C2—O1—Dy1i162.7 (3)
C4—C5—C6—C8179.3 (4)C7—C2—O1—Dy1i16.7 (4)
C3—C2—C7—O2173.5 (4)C2—C7—O2—Dy1167.5 (3)
O1—C2—C7—O26.0 (5)C6—C7—O2—Dy113.8 (6)
C3—C2—C7—C65.3 (6)C2—C7—O2—Dy1i7.9 (5)
O1—C2—C7—C6175.2 (3)C6—C7—O2—Dy1i170.8 (3)
C5—C6—C7—O2174.7 (4)O2i—Dy1—O2—C7175.7 (4)
C8—C6—C7—O26.0 (6)O1i—Dy1—O2—C7162.4 (3)
C5—C6—C7—C24.1 (6)O4—Dy1—O2—C7108.9 (3)
C8—C6—C7—C2175.3 (4)O3—Dy1—O2—C767.4 (3)
C5—C6—C8—N4176.4 (4)N4—Dy1—O2—C79.4 (3)
C7—C6—C8—N43.0 (7)O6—Dy1—O2—C771.2 (3)
C15—C10—C11—C121.1 (6)N5—Dy1—O2—C712.5 (4)
N5—C10—C11—C12176.9 (4)O8—Dy1—O2—C7111.5 (3)
C10—C11—C12—C131.8 (6)Dy1i—Dy1—O2—C7175.7 (4)
C11—C12—C13—C141.0 (7)O2i—Dy1—O2—Dy1i0.0
C12—C13—C14—C150.5 (6)O1i—Dy1—O2—Dy1i21.83 (19)
C13—C14—C15—C101.2 (6)O4—Dy1—O2—Dy1i66.82 (12)
C13—C14—C15—S1176.6 (3)O3—Dy1—O2—Dy1i108.32 (12)
C11—C10—C15—C140.5 (6)N4—Dy1—O2—Dy1i174.87 (13)
N5—C10—C15—C14175.8 (4)O6—Dy1—O2—Dy1i113.12 (11)
C11—C10—C15—S1176.5 (3)N5—Dy1—O2—Dy1i163.24 (12)
N5—C10—C15—S10.2 (4)O8—Dy1—O2—Dy1i72.77 (11)
C6—C8—N4—N9179.2 (4)O5—N6—O3—Dy1175.9 (4)
C6—C8—N4—Dy14.8 (7)O4—N6—O3—Dy13.2 (3)
O2—Dy1—N4—C80.1 (4)O2—Dy1—O3—N6126.4 (2)
O2i—Dy1—N4—C89.7 (5)O2i—Dy1—O3—N656.8 (2)
O1i—Dy1—N4—C8153.4 (3)O1i—Dy1—O3—N615.6 (2)
O4—Dy1—N4—C8104.5 (4)O4—Dy1—O3—N61.92 (19)
O3—Dy1—N4—C879.8 (4)N4—Dy1—O3—N6155.1 (2)
O6—Dy1—N4—C8116.7 (4)O6—Dy1—O3—N6130.8 (2)
N5—Dy1—N4—C8164.5 (4)N5—Dy1—O3—N686.6 (2)
O8—Dy1—N4—C874.6 (4)O8—Dy1—O3—N6128.8 (3)
Dy1i—Dy1—N4—C83.5 (4)Dy1i—Dy1—O3—N690.8 (2)
O2—Dy1—N4—N9176.0 (3)O5—N6—O4—Dy1175.9 (4)
O2i—Dy1—N4—N9166.4 (2)O3—N6—O4—Dy13.2 (3)
O1i—Dy1—N4—N922.7 (3)O2—Dy1—O4—N652.3 (2)
O4—Dy1—N4—N979.4 (3)O2i—Dy1—O4—N6118.6 (2)
O3—Dy1—N4—N9104.2 (3)O1i—Dy1—O4—N6170.4 (2)
O6—Dy1—N4—N959.4 (3)O3—Dy1—O4—N61.91 (19)
N5—Dy1—N4—N919.4 (2)N4—Dy1—O4—N632.4 (2)
O8—Dy1—N4—N9101.4 (3)O6—Dy1—O4—N6127.8 (2)
Dy1i—Dy1—N4—N9172.6 (2)N5—Dy1—O4—N686.3 (2)
N9—C9—N5—C10175.2 (4)O8—Dy1—O4—N6146.3 (2)
S1—C9—N5—C105.1 (4)Dy1i—Dy1—O4—N686.6 (2)
N9—C9—N5—Dy115.4 (5)O7—N7—O6—Dy1176.6 (4)
S1—C9—N5—Dy1164.29 (19)O8—N7—O6—Dy13.1 (4)
C11—C10—N5—C9173.0 (4)O2—Dy1—O6—N756.8 (2)
C15—C10—N5—C93.0 (5)O2i—Dy1—O6—N724.1 (3)
C11—C10—N5—Dy121.3 (6)O1i—Dy1—O6—N781.2 (2)
C15—C10—N5—Dy1162.7 (3)O4—Dy1—O6—N7123.1 (2)
O2—Dy1—N5—C940.9 (3)O3—Dy1—O6—N7147.7 (2)
O2i—Dy1—N5—C9167.3 (2)N4—Dy1—O6—N7122.6 (2)
O1i—Dy1—N5—C9135.7 (3)N5—Dy1—O6—N7166.3 (3)
O4—Dy1—N5—C9148.7 (3)O8—Dy1—O6—N71.8 (2)
O3—Dy1—N5—C995.1 (3)Dy1i—Dy1—O6—N716.8 (2)
N4—Dy1—N5—C917.7 (3)O7—N7—O8—Dy1176.7 (4)
O6—Dy1—N5—C956.8 (3)O6—N7—O8—Dy13.0 (4)
O8—Dy1—N5—C967.5 (3)O2—Dy1—O8—N7129.1 (2)
Dy1i—Dy1—N5—C9108.9 (4)O2i—Dy1—O8—N7153.6 (3)
O2—Dy1—N5—C10153.8 (3)O1i—Dy1—O8—N782.3 (2)
O2i—Dy1—N5—C102.0 (5)O4—Dy1—O8—N7125.1 (2)
O1i—Dy1—N5—C1029.6 (4)O3—Dy1—O8—N7126.7 (3)
O4—Dy1—N5—C1046.0 (4)N4—Dy1—O8—N756.0 (2)
O3—Dy1—N5—C1099.6 (4)O6—Dy1—O8—N71.8 (2)
N4—Dy1—N5—C10177.0 (4)N5—Dy1—O8—N711.4 (3)
O6—Dy1—N5—C10108.5 (4)Dy1i—Dy1—O8—N7167.8 (3)
O8—Dy1—N5—C1097.8 (4)N5—C9—S1—C154.6 (3)
Dy1i—Dy1—N5—C1085.8 (5)N9—C9—S1—C15175.7 (4)
N5—C9—N9—N43.2 (6)C14—C15—S1—C9173.3 (4)
S1—C9—N9—N4177.1 (3)C10—C15—S1—C92.4 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3ii0.842.643.206 (4)126
O9—H9A···O8iii0.842.243.049 (4)161
N9—H9···O9iv0.881.912.751 (4)160
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Dy2(C15H12N3O2S)2(NO3)4]·2CH4O
Mr1233.82
Crystal system, space groupTriclinic, P1
Temperature (K)159
a, b, c (Å)9.6191 (6), 10.1002 (7), 11.6151 (8)
α, β, γ (°)112.045 (1), 105.065 (1), 93.154 (1)
V3)995.23 (12)
Z1
Radiation typeMo Kα
µ (mm1)3.92
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.631, 0.676
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 3502, 3162
Rint0.016
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.07
No. of reflections3502
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.51

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006) and XP (Siemens, 1994), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Dy1—O22.280 (3)Dy1—N42.461 (3)
Dy1—O2i2.374 (2)Dy1—O62.471 (3)
Dy1—O1i2.394 (3)Dy1—N52.494 (3)
Dy1—O42.422 (3)Dy1—O82.530 (3)
Dy1—O32.433 (3)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3ii0.842.643.206 (4)126
O9—H9A···O8iii0.842.243.049 (4)161
N9—H9···O9iv0.881.912.751 (4)160
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Acknowledgements

Financial support by the NSFC (20761004, 21061009) and the Inner Mongolia Autonomous Region Fund for Natural Science (2010MS0201) is gratefully acknowledged. This work was supported by the "211 project" of the postgraduate student programme of Inner Mongolia University.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLin, P.-H., Burchell, T. J., Clérac, R. & Murugesu, M. (2008). Angew. Chem. Int. Ed. 47, 8848–8851.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, S.-Y., Guo, Y.-N., Xu, G.-F. & Tang, J.-K. (2010). Chin. J. Appl. Chem. 27, 1365–1371.  CAS Google Scholar
First citationLin, Y.-C. & Hong, F.-E. (2009). Acta Cryst. E65, m1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Weng, C.-M., Huang, P.-C. & Hong, F.-E. (2009). Tetrahedron, 65, 2889–2897.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J.-K., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506–1508.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m796-m797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds