organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N,N′-di­methyl-N′′-(methyl­sulfon­yl)phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 23 March 2011; accepted 26 April 2011; online 7 May 2011)

In the title compound, C17H24N3O3PS, the P and the S atoms are each in a distorted tetra­hedral environment and the N atoms display sp2 character. The phosphoryl group and the NH unit are anti with respect to one another. The dihedral angle between the mean planes of the benzene rings is 31.08 (8)°. The crystal packing is stabilized by N—H⋯O hydrogen bonds, forming an extended chain parallel to the b axis.

Related literature

For phospho­ramidates having a P(O)[N(CH3)(CH2C6H5)]2 moiety, see: Pourayoubi et al. (2010[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o2524.]); Gholivand et al. (2005[Gholivand, K., Pourayoubi, M., Shariatinia, Z. & Mostaanzadeh, H. (2005). Polyhedron, 24, 655-662.]). For bond lengths in a sulfonamide compound, see: Ibrahim et al. (2011[Ibrahim, S., Tahir, M. N., Iqbal, N., Shahwar, D. & Raza, M. A. (2011). Acta Cryst. E67, o298.]) and references cited therein.

[Scheme 1]

Experimental

Crystal data
  • C17H24N3O3PS

  • Mr = 381.42

  • Orthorhombic, P 21 21 21

  • a = 8.5343 (4) Å

  • b = 10.1800 (5) Å

  • c = 22.0455 (10) Å

  • V = 1915.29 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.47 × 0.38 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Uinversity of Göttingen, Germany.]) Tmin = 0.700, Tmax = 0.746

  • 65627 measured reflections

  • 4155 independent reflections

  • 3937 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.08

  • 4155 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1769 Friedel pairs

  • Flack parameter: 0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H⋯O1i 0.86 1.91 2.7152 (19) 155
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Structure determination of the title compound, CH3S(O)2NHP(O)[N(CH3)(CH2C6H5)]2 (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of new phosphoramidate compounds having a P(O)[N(CH3)(CH2C6H5)]2 moiety (Pourayoubi et al., 2010).

The PO and P—N bond lengths are comparable to those in similar phosphoramidates of the formula XP(O)[N(CH3)(CH2C6H5)]2 [where X = Cl, C6H5C(O)NH, CCl3C(O)NH] (Gholivand et al., 2005). The P—N1 and P—N2 bonds (with bond lengths of 1.6326 (17) Å and 1.6285 (18) Å) are shorter than the P—N3 bond (1.6714 (15) Å). The SO bond lengths of 1.4317 (16) Å & 1.4287 (18) Å are standard for sulfonamide compounds (Ibrahim et al., 2011).

Each of the phosphorus and sulfur atoms has a distorted tetrahedral configuration. The surrounding bond angles are in the range of 104.84 (9)° to 117.02 (9)° around the P atom and 104.79 (12)° to 118.53 (12)° for the S atom. The average of surrounding angles around the tertiary nitrogen atom N2 (which is about 120°) shows that it is bonded in an essentially planar geometry; whereas, the environment of N1 is slightly deviated from planarity (average of bond angles is 118.3°). Furthermore, the S—N3—P angle is 125.05 (9)°. The dihedral angle between the mean planes of the benzene rings is 31.08 (8)°.

The phosphoryl group and the NH unit adopt the anti orientations with respect to each other. Crystal packing is stabilized by N—H···O hydrogen bonds, forming an extended chain parallel to the b axis (Fig. 2).

Related literature top

For phosphoramidates having a P(O)[N(CH3)(CH2C6H5)]2 moiety, see: Pourayoubi et al. (2010); Gholivand et al. (2005). For bond lengths in a sulfonamide compound, see: Ibrahim et al. (2011) and references cited therein.

Experimental top

CH3S(O)2NHP(O)Cl2 was synthesized from the reaction between phosphorus pentachloride (16.7 mmol) and methanesulfonamide (16.7 mmol) in dry CCl4 at 353 K (3 h) and then treated with formic acid 85% (16.7 mmol) at ice bath temperature.

To a solution of CH3S(O)2NHP(O)Cl2 (2.35 mmol) in dry chloroform (30 ml), a solution of N-methylbenzylamine (9.40 mmol) in the same solvent (10 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from CH3CN/CHCl3 at room temperature.

Refinement top

H atoms were placed in calculated positions and included in the refinement in a riding-model approximation with CH = 0.93, CH2 = 0.97, CH3 = 0.96 Å or N—H = 0.86 Å with Uiso(H) parameters equal to 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through N—H···O hydrogen bonds which are shown as dotted lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. [Symmetry code: (i) -x, y + 1/2, -z + 1/2]
N,N'-Dibenzyl-N,N'-dimethyl- N''-(methylsulfonyl)phosphoric triamide top
Crystal data top
C17H24N3O3PSF(000) = 808
Mr = 381.42Dx = 1.323 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9705 reflections
a = 8.5343 (4) Åθ = 2.6–29.5°
b = 10.1800 (5) ŵ = 0.27 mm1
c = 22.0455 (10) ÅT = 296 K
V = 1915.29 (16) Å3Irregular, colourless
Z = 40.47 × 0.38 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
4155 independent reflections
Radiation source: fine-focus sealed tube3937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.700, Tmax = 0.746k = 1313
65627 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.4498P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4155 reflectionsΔρmax = 0.30 e Å3
226 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1769 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C17H24N3O3PSV = 1915.29 (16) Å3
Mr = 381.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5343 (4) ŵ = 0.27 mm1
b = 10.1800 (5) ÅT = 296 K
c = 22.0455 (10) Å0.47 × 0.38 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
4155 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3937 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.746Rint = 0.060
65627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.30 e Å3
S = 1.08Δρmin = 0.22 e Å3
4155 reflectionsAbsolute structure: Flack (1983), 1769 Friedel pairs
226 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.14987 (6)0.66473 (5)0.33606 (2)0.03622 (13)
P0.01450 (6)0.58351 (4)0.22593 (2)0.02755 (11)
O20.1835 (2)0.78944 (16)0.36311 (8)0.0531 (5)
O30.2779 (2)0.58363 (18)0.31763 (9)0.0548 (4)
O10.0074 (2)0.45080 (12)0.25313 (7)0.0376 (3)
N20.1005 (2)0.61222 (17)0.16850 (8)0.0374 (4)
N10.19197 (19)0.61606 (16)0.20271 (8)0.0357 (4)
C160.2309 (3)0.7047 (3)0.16690 (14)0.0598 (7)
H16A0.23670.75060.20490.090*
H16B0.32680.65770.16010.090*
H16C0.21490.76660.13460.090*
C110.4106 (4)0.2282 (3)0.07992 (17)0.0756 (10)
H110.48170.16090.07240.091*
C100.3104 (4)0.2678 (3)0.03513 (15)0.0733 (9)
H100.31230.22690.00260.088*
C90.2056 (3)0.3697 (3)0.04626 (12)0.0551 (6)
H90.14020.39890.01540.066*
C140.1979 (2)0.4282 (2)0.10302 (9)0.0377 (4)
C150.0776 (3)0.5341 (2)0.11360 (10)0.0420 (5)
H15A0.02510.49350.11550.050*
H15B0.07800.59280.07890.050*
C70.2255 (3)0.7384 (2)0.17023 (13)0.0479 (6)
H7A0.27140.80070.19840.058*
H7B0.12770.77530.15580.058*
C60.3355 (2)0.7211 (2)0.11683 (10)0.0370 (4)
C10.4198 (3)0.8292 (2)0.09625 (11)0.0451 (5)
H10.41060.90940.11610.054*
C20.5174 (3)0.8180 (3)0.04622 (12)0.0553 (6)
H20.57290.89070.03240.066*
C30.5322 (3)0.6990 (3)0.01694 (11)0.0621 (7)
H30.59800.69120.01650.074*
N30.0373 (2)0.69410 (14)0.27825 (7)0.0313 (3)
H0.00160.77260.27420.038*
C170.0341 (4)0.5731 (3)0.38565 (11)0.0583 (7)
H17A0.05360.62510.39860.087*
H17B0.00310.49580.36530.087*
H17C0.09520.54800.42030.087*
C80.3248 (3)0.5572 (3)0.23501 (12)0.0588 (7)
H8A0.29150.47780.25460.088*
H8B0.36310.61790.26490.088*
H8C0.40690.53750.20670.088*
C50.3510 (3)0.6022 (2)0.08697 (10)0.0448 (5)
H50.29520.52920.10020.054*
C40.4499 (3)0.5922 (3)0.03725 (11)0.0578 (6)
H40.46040.51200.01750.069*
C130.2991 (3)0.3855 (2)0.14752 (11)0.0478 (5)
H130.29510.42330.18590.057*
C120.4069 (3)0.2868 (3)0.13576 (15)0.0633 (8)
H120.47660.26040.16580.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0438 (3)0.0249 (2)0.0400 (2)0.0002 (2)0.0118 (2)0.00027 (19)
P0.0334 (2)0.01673 (19)0.0325 (2)0.00014 (17)0.00382 (18)0.00090 (16)
O20.0683 (12)0.0342 (8)0.0568 (9)0.0053 (8)0.0255 (9)0.0081 (7)
O30.0429 (8)0.0435 (9)0.0780 (12)0.0137 (8)0.0150 (8)0.0002 (8)
O10.0544 (8)0.0169 (6)0.0414 (7)0.0007 (6)0.0042 (7)0.0001 (5)
N20.0398 (9)0.0332 (9)0.0393 (8)0.0046 (7)0.0017 (7)0.0013 (7)
N10.0336 (8)0.0301 (8)0.0433 (9)0.0012 (7)0.0082 (7)0.0015 (7)
C160.0598 (15)0.0479 (13)0.0715 (17)0.0193 (12)0.0217 (14)0.0054 (13)
C110.083 (2)0.0558 (17)0.088 (2)0.0198 (16)0.0378 (19)0.0022 (16)
C100.092 (2)0.0602 (17)0.0673 (18)0.0035 (17)0.0323 (18)0.0242 (15)
C90.0606 (15)0.0588 (15)0.0460 (12)0.0044 (12)0.0048 (11)0.0095 (11)
C140.0360 (10)0.0378 (10)0.0394 (10)0.0035 (9)0.0055 (8)0.0014 (8)
C150.0426 (11)0.0498 (12)0.0335 (10)0.0064 (10)0.0038 (9)0.0025 (9)
C70.0481 (12)0.0276 (10)0.0681 (15)0.0014 (9)0.0255 (12)0.0040 (10)
C60.0321 (10)0.0344 (10)0.0445 (11)0.0045 (8)0.0053 (9)0.0037 (8)
C10.0411 (11)0.0380 (11)0.0562 (13)0.0045 (10)0.0081 (10)0.0102 (10)
C20.0521 (13)0.0568 (14)0.0572 (14)0.0027 (12)0.0138 (12)0.0231 (12)
C30.0648 (17)0.0809 (19)0.0404 (12)0.0116 (15)0.0189 (12)0.0099 (13)
N30.0405 (8)0.0157 (6)0.0376 (8)0.0018 (6)0.0083 (7)0.0012 (6)
C170.090 (2)0.0473 (13)0.0379 (11)0.0056 (14)0.0010 (12)0.0081 (10)
C80.0402 (12)0.0805 (19)0.0558 (14)0.0078 (13)0.0026 (11)0.0025 (13)
C50.0418 (11)0.0420 (12)0.0505 (12)0.0027 (10)0.0077 (10)0.0021 (9)
C40.0680 (16)0.0596 (16)0.0456 (12)0.0113 (13)0.0119 (11)0.0092 (12)
C130.0491 (12)0.0486 (13)0.0456 (12)0.0100 (10)0.0059 (9)0.0022 (10)
C120.0523 (15)0.0623 (17)0.0751 (18)0.0195 (13)0.0145 (13)0.0149 (14)
Geometric parameters (Å, º) top
S—O31.4287 (18)C15—H15B0.9700
S—O21.4317 (16)C7—C61.516 (3)
S—N31.6236 (16)C7—H7A0.9700
S—C171.744 (3)C7—H7B0.9700
P—O11.4794 (13)C6—C51.384 (3)
P—N21.6285 (18)C6—C11.390 (3)
P—N11.6326 (17)C1—C21.387 (3)
P—N31.6714 (15)C1—H10.9300
N2—C161.458 (3)C2—C31.378 (4)
N2—C151.461 (3)C2—H20.9300
N1—C71.465 (3)C3—C41.369 (4)
N1—C81.467 (3)C3—H30.9300
C16—H16A0.9600N3—H0.8600
C16—H16B0.9600C17—H17A0.9600
C16—H16C0.9600C17—H17B0.9600
C11—C121.368 (5)C17—H17C0.9600
C11—C101.367 (5)C8—H8A0.9600
C11—H110.9300C8—H8B0.9600
C10—C91.392 (4)C8—H8C0.9600
C10—H100.9300C5—C41.387 (3)
C9—C141.387 (3)C5—H50.9300
C9—H90.9300C4—H40.9300
C14—C131.378 (3)C13—C121.387 (4)
C14—C151.507 (3)C13—H130.9300
C15—H15A0.9700C12—H120.9300
O3—S—O2118.53 (12)C6—C7—H7A108.8
O3—S—N3109.61 (10)N1—C7—H7B108.8
O2—S—N3106.39 (9)C6—C7—H7B108.8
O3—S—C17107.61 (13)H7A—C7—H7B107.7
O2—S—C17109.08 (12)C5—C6—C1119.2 (2)
N3—S—C17104.79 (12)C5—C6—C7121.98 (19)
O1—P—N2117.02 (9)C1—C6—C7118.82 (19)
O1—P—N1110.51 (9)C2—C1—C6120.3 (2)
N2—P—N1106.20 (9)C2—C1—H1119.8
O1—P—N3108.94 (8)C6—C1—H1119.8
N2—P—N3104.84 (9)C3—C2—C1120.0 (2)
N1—P—N3108.98 (8)C3—C2—H2120.0
C16—N2—C15115.69 (19)C1—C2—H2120.0
C16—N2—P126.49 (17)C4—C3—C2119.8 (2)
C15—N2—P117.76 (15)C4—C3—H3120.1
C7—N1—C8115.7 (2)C2—C3—H3120.1
C7—N1—P120.48 (14)S—N3—P125.05 (9)
C8—N1—P118.83 (16)S—N3—H117.5
N2—C16—H16A109.5P—N3—H117.5
N2—C16—H16B109.5S—C17—H17A109.5
H16A—C16—H16B109.5S—C17—H17B109.5
N2—C16—H16C109.5H17A—C17—H17B109.5
H16A—C16—H16C109.5S—C17—H17C109.5
H16B—C16—H16C109.5H17A—C17—H17C109.5
C12—C11—C10120.5 (3)H17B—C17—H17C109.5
C12—C11—H11119.8N1—C8—H8A109.5
C10—C11—H11119.8N1—C8—H8B109.5
C11—C10—C9119.6 (3)H8A—C8—H8B109.5
C11—C10—H10120.2N1—C8—H8C109.5
C9—C10—H10120.2H8A—C8—H8C109.5
C14—C9—C10120.6 (3)H8B—C8—H8C109.5
C14—C9—H9119.7C6—C5—C4119.9 (2)
C10—C9—H9119.7C6—C5—H5120.1
C13—C14—C9118.5 (2)C4—C5—H5120.1
C13—C14—C15122.87 (19)C3—C4—C5120.8 (2)
C9—C14—C15118.6 (2)C3—C4—H4119.6
N2—C15—C14115.23 (18)C5—C4—H4119.6
N2—C15—H15A108.5C14—C13—C12120.8 (2)
C14—C15—H15A108.5C14—C13—H13119.6
N2—C15—H15B108.5C12—C13—H13119.6
C14—C15—H15B108.5C11—C12—C13119.9 (3)
H15A—C15—H15B107.5C11—C12—H12120.0
N1—C7—C6113.73 (16)C13—C12—H12120.0
N1—C7—H7A108.8
O1—P—N2—C16114.6 (2)P—N1—C7—C6138.44 (18)
N1—P—N2—C16121.5 (2)N1—C7—C6—C524.7 (3)
N3—P—N2—C166.2 (2)N1—C7—C6—C1157.2 (2)
O1—P—N2—C1562.24 (18)C5—C6—C1—C20.3 (3)
N1—P—N2—C1561.66 (17)C7—C6—C1—C2177.8 (2)
N3—P—N2—C15176.96 (15)C6—C1—C2—C30.5 (4)
O1—P—N1—C7175.63 (16)C1—C2—C3—C40.3 (4)
N2—P—N1—C747.76 (19)O3—S—N3—P41.70 (16)
N3—P—N1—C764.70 (18)O2—S—N3—P170.99 (13)
O1—P—N1—C830.5 (2)C17—S—N3—P73.54 (16)
N2—P—N1—C8158.39 (18)O1—P—N3—S25.84 (16)
N3—P—N1—C889.15 (19)N2—P—N3—S100.16 (13)
C12—C11—C10—C90.9 (5)N1—P—N3—S146.48 (13)
C11—C10—C9—C142.4 (5)C1—C6—C5—C40.1 (4)
C10—C9—C14—C131.7 (4)C7—C6—C5—C4178.2 (2)
C10—C9—C14—C15177.4 (2)C2—C3—C4—C50.2 (4)
C16—N2—C15—C1472.4 (3)C6—C5—C4—C30.4 (4)
P—N2—C15—C14104.8 (2)C9—C14—C13—C120.3 (4)
C13—C14—C15—N215.1 (3)C15—C14—C13—C12179.4 (2)
C9—C14—C15—N2165.9 (2)C10—C11—C12—C131.2 (5)
C8—N1—C7—C666.9 (3)C14—C13—C12—C111.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H···O1i0.861.912.7152 (19)155
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H24N3O3PS
Mr381.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.5343 (4), 10.1800 (5), 22.0455 (10)
V3)1915.29 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.47 × 0.38 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.700, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
65627, 4155, 3937
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.08
No. of reflections4155
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22
Absolute structureFlack (1983), 1769 Friedel pairs
Absolute structure parameter0.02 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H···O1i0.861.912.7152 (19)155
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholivand, K., Pourayoubi, M., Shariatinia, Z. & Mostaanzadeh, H. (2005). Polyhedron, 24, 655–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationIbrahim, S., Tahir, M. N., Iqbal, N., Shahwar, D. & Raza, M. A. (2011). Acta Cryst. E67, o298.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o2524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. Uinversity of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds