organic compounds
Urea–adipic acid (2/1)
aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn
The 4N2O·C6H10O4, contains two urea molecules and two half-molecules of adipic acid; the latter are completed by crystallographic inversion symmetry. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen bonds, generating a chain along [110]. Additional weak inter-chain O—H⋯O and N—H⋯O intermolecular interactions lead to the formation of a three-dimensional network.
of the title 2CHRelated literature
For urea inclusion compounds, see: Videnova-Adrabińska (1996a); Harris & Thomas (1990); Yeo et al. (1997). For urea–dicarboxylic acid engineering with predesigned crystal building blocks, see: Videnova-Adrabińska (1996b). For a urea-dicarboxylic acid with a phase diagram, see: Chadwick et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811015273/jj2086sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015273/jj2086Isup2.hkl
Adipic acid (0.0371 g, 0.25 mmol) and urea (0.0360 g, 0.60 mmol) were dissolved in 15 ml water (pH = 3.11) under stirring. After slow evaporation of the solution for one week at 50°C, colorless block crystals were formed.
H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.97 Å, N–H distances 0.86Å and Uiso(H) = 1.2 Ueq(C, N). H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title co-crystal. Displacement ellipsoids are shown at the 45% probability level.(#1 = -x + 2, -y + 1, -z + 2; #2 = -x, -y, -z + 1) | |
Fig. 2. One-dimensional chain of the title co-crystal viewed along the b axis. O–H···O and N–H···O hydrogen bonds are shown as dashed lines. | |
Fig. 3. Packing diagram of the title co-crystal viewed down the a axis. O–H···O and N–H···O hydrogen bonds are shown as dashed lines. |
2CH4N2O·C6H10O4 | Z = 2 |
Mr = 266.26 | F(000) = 284 |
Triclinic, P1 | Dx = 1.356 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2484 (14) Å | Cell parameters from 3579 reflections |
b = 7.6965 (15) Å | θ = 3.2–27.5° |
c = 11.964 (2) Å | µ = 0.12 mm−1 |
α = 101.81 (3)° | T = 293 K |
β = 92.55 (3)° | Block, colorless |
γ = 91.92 (3)° | 0.35 × 0.26 × 0.18 mm |
V = 652.0 (2) Å3 |
Rigaku R-AXIS RAPID diffractometer | 2949 independent reflections |
Radiation source: fine-focus sealed tube | 1457 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→8 |
Tmin = 0.965, Tmax = 0.980 | k = −9→9 |
6479 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.186 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4241P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2949 reflections | Δρmax = 0.37 e Å−3 |
164 parameters | Δρmin = −0.35 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.072 (9) |
2CH4N2O·C6H10O4 | γ = 91.92 (3)° |
Mr = 266.26 | V = 652.0 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2484 (14) Å | Mo Kα radiation |
b = 7.6965 (15) Å | µ = 0.12 mm−1 |
c = 11.964 (2) Å | T = 293 K |
α = 101.81 (3)° | 0.35 × 0.26 × 0.18 mm |
β = 92.55 (3)° |
Rigaku R-AXIS RAPID diffractometer | 2949 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1457 reflections with I > 2σ(I) |
Tmin = 0.965, Tmax = 0.980 | Rint = 0.048 |
6479 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.37 e Å−3 |
2949 reflections | Δρmin = −0.35 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5934 (4) | 0.6694 (4) | 0.8940 (2) | 0.0678 (8) | |
O2 | 0.5075 (3) | 0.7886 (3) | 1.06743 (19) | 0.0478 (6) | |
H2E | 0.4187 | 0.8216 | 1.0308 | 0.072* | |
C1 | 0.6238 (4) | 0.7000 (4) | 0.9963 (3) | 0.0408 (7) | |
C2 | 0.7946 (4) | 0.6471 (4) | 1.0527 (3) | 0.0443 (8) | |
H2C | 0.7600 | 0.5941 | 1.1160 | 0.053* | |
H2D | 0.8716 | 0.7530 | 1.0838 | 0.053* | |
C3 | 0.9073 (4) | 0.5167 (4) | 0.9733 (3) | 0.0435 (8) | |
H3C | 0.8368 | 0.4046 | 0.9506 | 0.052* | |
H3D | 0.9276 | 0.5622 | 0.9048 | 0.052* | |
O3 | 0.1850 (4) | 0.3529 (3) | 0.37617 (19) | 0.0552 (7) | |
O4 | 0.2542 (3) | 0.5187 (3) | 0.54892 (18) | 0.0500 (6) | |
H4C | 0.2980 | 0.5916 | 0.5130 | 0.075* | |
C4 | 0.1849 (4) | 0.3734 (4) | 0.4793 (3) | 0.0399 (7) | |
C5 | 0.1037 (5) | 0.2411 (4) | 0.5417 (3) | 0.0438 (8) | |
H5A | 0.0037 | 0.2953 | 0.5857 | 0.053* | |
H5B | 0.1977 | 0.2146 | 0.5952 | 0.053* | |
C6 | 0.0300 (4) | 0.0679 (4) | 0.4655 (3) | 0.0422 (8) | |
H6A | 0.1253 | 0.0190 | 0.4153 | 0.051* | |
H6B | −0.0745 | 0.0914 | 0.4182 | 0.051* | |
O5 | 0.3998 (3) | 0.7766 (3) | 0.46884 (18) | 0.0477 (6) | |
C7 | 0.4225 (4) | 0.7824 (4) | 0.3659 (3) | 0.0404 (7) | |
N1 | 0.4904 (4) | 0.9306 (3) | 0.3376 (2) | 0.0522 (8) | |
H1A | 0.5191 | 1.0232 | 0.3900 | 0.063* | |
H1B | 0.5054 | 0.9332 | 0.2671 | 0.063* | |
N2 | 0.3789 (5) | 0.6436 (4) | 0.2825 (2) | 0.0600 (9) | |
H2A | 0.3341 | 0.5469 | 0.2982 | 0.072* | |
H2B | 0.3953 | 0.6499 | 0.2127 | 0.072* | |
O6 | 0.2201 (3) | 0.9024 (3) | 0.96911 (17) | 0.0419 (6) | |
C8 | 0.1495 (4) | 0.8482 (4) | 0.8697 (3) | 0.0370 (7) | |
N3 | 0.2432 (4) | 0.7456 (4) | 0.7892 (2) | 0.0564 (8) | |
H3A | 0.3532 | 0.7161 | 0.8053 | 0.068* | |
H3B | 0.1935 | 0.7093 | 0.7215 | 0.068* | |
N4 | −0.0194 (4) | 0.8939 (3) | 0.8407 (2) | 0.0466 (7) | |
H4A | −0.0815 | 0.9615 | 0.8904 | 0.056* | |
H4B | −0.0660 | 0.8558 | 0.7723 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0634 (17) | 0.0839 (18) | 0.0446 (16) | 0.0303 (14) | −0.0110 (13) | −0.0150 (13) |
O2 | 0.0428 (13) | 0.0601 (14) | 0.0419 (13) | 0.0105 (11) | 0.0071 (10) | 0.0118 (11) |
C1 | 0.0391 (18) | 0.0333 (15) | 0.048 (2) | 0.0012 (13) | 0.0018 (15) | 0.0027 (14) |
C2 | 0.0412 (18) | 0.0391 (16) | 0.052 (2) | 0.0007 (14) | −0.0008 (15) | 0.0094 (15) |
C3 | 0.0404 (18) | 0.0329 (15) | 0.055 (2) | −0.0023 (13) | −0.0013 (15) | 0.0056 (14) |
O3 | 0.0784 (18) | 0.0461 (13) | 0.0371 (14) | −0.0182 (12) | 0.0011 (12) | 0.0028 (10) |
O4 | 0.0681 (16) | 0.0402 (12) | 0.0383 (13) | −0.0146 (11) | 0.0061 (11) | 0.0023 (10) |
C4 | 0.0424 (18) | 0.0352 (15) | 0.0406 (19) | −0.0028 (13) | 0.0007 (14) | 0.0056 (13) |
C5 | 0.0489 (19) | 0.0397 (16) | 0.0441 (19) | −0.0006 (14) | 0.0061 (15) | 0.0117 (14) |
C6 | 0.0426 (18) | 0.0365 (15) | 0.0493 (19) | −0.0005 (13) | 0.0053 (15) | 0.0124 (14) |
O5 | 0.0645 (16) | 0.0396 (12) | 0.0363 (13) | −0.0118 (11) | 0.0069 (11) | 0.0023 (9) |
C7 | 0.0412 (18) | 0.0370 (16) | 0.0407 (18) | −0.0024 (13) | 0.0043 (14) | 0.0028 (13) |
N1 | 0.074 (2) | 0.0440 (15) | 0.0369 (15) | −0.0141 (14) | 0.0108 (14) | 0.0057 (12) |
N2 | 0.090 (2) | 0.0472 (16) | 0.0367 (16) | −0.0175 (16) | 0.0021 (15) | −0.0016 (13) |
O6 | 0.0444 (13) | 0.0450 (12) | 0.0329 (12) | 0.0059 (10) | −0.0015 (10) | 0.0004 (9) |
C8 | 0.0424 (18) | 0.0330 (15) | 0.0346 (17) | 0.0004 (13) | 0.0029 (14) | 0.0049 (13) |
N3 | 0.063 (2) | 0.0648 (18) | 0.0359 (16) | 0.0191 (16) | 0.0028 (14) | −0.0042 (13) |
N4 | 0.0459 (17) | 0.0509 (15) | 0.0399 (15) | 0.0055 (13) | −0.0052 (12) | 0.0032 (12) |
O1—C1 | 1.207 (4) | C6—C6ii | 1.522 (6) |
O2—C1 | 1.329 (4) | C6—H6A | 0.9700 |
O2—H2E | 0.8383 | C6—H6B | 0.9700 |
C1—C2 | 1.492 (4) | O5—C7 | 1.259 (4) |
C2—C3 | 1.520 (4) | C7—N2 | 1.323 (4) |
C2—H2C | 0.9700 | C7—N1 | 1.339 (4) |
C2—H2D | 0.9700 | N1—H1A | 0.8600 |
C3—C3i | 1.515 (6) | N1—H1B | 0.8600 |
C3—H3C | 0.9700 | N2—H2A | 0.8600 |
C3—H3D | 0.9700 | N2—H2B | 0.8600 |
O3—C4 | 1.212 (4) | O6—C8 | 1.257 (3) |
O4—C4 | 1.319 (4) | C8—N4 | 1.335 (4) |
O4—H4C | 0.8357 | C8—N3 | 1.340 (4) |
C4—C5 | 1.500 (4) | N3—H3A | 0.8600 |
C5—C6 | 1.518 (4) | N3—H3B | 0.8600 |
C5—H5A | 0.9700 | N4—H4A | 0.8600 |
C5—H5B | 0.9700 | N4—H4B | 0.8600 |
C1—O2—H2E | 110.5 | H5A—C5—H5B | 107.5 |
O1—C1—O2 | 121.8 (3) | C5—C6—C6ii | 112.1 (3) |
O1—C1—C2 | 123.4 (3) | C5—C6—H6A | 109.2 |
O2—C1—C2 | 114.8 (3) | C6ii—C6—H6A | 109.2 |
C1—C2—C3 | 113.9 (3) | C5—C6—H6B | 109.2 |
C1—C2—H2C | 108.8 | C6ii—C6—H6B | 109.2 |
C3—C2—H2C | 108.8 | H6A—C6—H6B | 107.9 |
C1—C2—H2D | 108.8 | O5—C7—N2 | 121.3 (3) |
C3—C2—H2D | 108.8 | O5—C7—N1 | 120.7 (3) |
H2C—C2—H2D | 107.7 | N2—C7—N1 | 118.0 (3) |
C3i—C3—C2 | 113.4 (3) | C7—N1—H1A | 120.0 |
C3i—C3—H3C | 108.9 | C7—N1—H1B | 120.0 |
C2—C3—H3C | 108.9 | H1A—N1—H1B | 120.0 |
C3i—C3—H3D | 108.9 | C7—N2—H2A | 120.0 |
C2—C3—H3D | 108.9 | C7—N2—H2B | 120.0 |
H3C—C3—H3D | 107.7 | H2A—N2—H2B | 120.0 |
C4—O4—H4C | 111.7 | O6—C8—N4 | 121.0 (3) |
O3—C4—O4 | 122.7 (3) | O6—C8—N3 | 120.8 (3) |
O3—C4—C5 | 124.5 (3) | N4—C8—N3 | 118.1 (3) |
O4—C4—C5 | 112.8 (3) | C8—N3—H3A | 120.0 |
C4—C5—C6 | 114.8 (3) | C8—N3—H3B | 120.0 |
C4—C5—H5A | 108.6 | H3A—N3—H3B | 120.0 |
C6—C5—H5A | 108.6 | C8—N4—H4A | 120.0 |
C4—C5—H5B | 108.6 | C8—N4—H4B | 120.0 |
C6—C5—H5B | 108.6 | H4A—N4—H4B | 120.0 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2E···O6 | 0.84 | 1.78 | 2.611 (3) | 173 |
O4—H4C···O5 | 0.84 | 1.77 | 2.588 (3) | 167 |
N1—H1A···O5iii | 0.86 | 2.09 | 2.942 (3) | 172 |
N1—H1B···O2iv | 0.86 | 2.42 | 3.203 (3) | 151 |
N2—H2A···O3 | 0.86 | 2.20 | 3.031 (4) | 164 |
N2—H2B···O2iv | 0.86 | 2.38 | 3.171 (4) | 154 |
N3—H3A···O1 | 0.86 | 2.08 | 2.912 (4) | 163 |
N3—H3B···O4 | 0.86 | 2.34 | 3.049 (3) | 140 |
N4—H4A···O6v | 0.86 | 2.11 | 2.956 (3) | 170 |
N4—H4B···O3vi | 0.86 | 2.26 | 3.055 (3) | 155 |
Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) x, y, z−1; (v) −x, −y+2, −z+2; (vi) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | 2CH4N2O·C6H10O4 |
Mr | 266.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.2484 (14), 7.6965 (15), 11.964 (2) |
α, β, γ (°) | 101.81 (3), 92.55 (3), 91.92 (3) |
V (Å3) | 652.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.35 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.965, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6479, 2949, 1457 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.186, 1.11 |
No. of reflections | 2949 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.35 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2E···O6 | 0.84 | 1.78 | 2.611 (3) | 173 |
O4—H4C···O5 | 0.84 | 1.77 | 2.588 (3) | 167 |
N1—H1A···O5i | 0.86 | 2.09 | 2.942 (3) | 172 |
N1—H1B···O2ii | 0.86 | 2.42 | 3.203 (3) | 151 |
N2—H2A···O3 | 0.86 | 2.20 | 3.031 (4) | 164 |
N2—H2B···O2ii | 0.86 | 2.38 | 3.171 (4) | 154 |
N3—H3A···O1 | 0.86 | 2.08 | 2.912 (4) | 163 |
N3—H3B···O4 | 0.86 | 2.34 | 3.049 (3) | 140 |
N4—H4A···O6iii | 0.86 | 2.11 | 2.956 (3) | 170 |
N4—H4B···O3iv | 0.86 | 2.26 | 3.055 (3) | 155 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z−1; (iii) −x, −y+2, −z+2; (iv) −x, −y+1, −z+1. |
Acknowledgements
This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.
References
Chadwick, K., Davey, R., Sadiq, G., Cross, W. & Pritchard, R. (2009). CrystEngComm, 11, 412–414. Web of Science CSD CrossRef CAS Google Scholar
Harris, K. D. M. & Thomas, J. M. (1990). J. Chem. Soc. Faraday Trans. pp. 2985–2996 CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Videnova-Adrabińska, V. (1996a). Acta Cryst. B52, 1048–1056. CSD CrossRef Web of Science IUCr Journals Google Scholar
Videnova-Adrabińska, V. (1996b). J. Mol. Struct. 374, 199–222. Google Scholar
Yeo, L., Harris, K. D. M. & Guillaume, F. (1997). J. Solid State Chem. 128, 273–281. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is considerable interest in the structural and dynamic properties of urea inclusion compounds. In these solids (Videnova-Adrabińska, 1996a), the urea molecules form an extensively hydrogen-bonded host structure (Harris et al., 1990), containing linear, parallel tunnels with guest molecules packed densely along these tunnels (Yeo et al., 1997). This crystal structure study is part of a broader program of urea-dicarboxylic acid cocrystal engineering with predesigned crystal building blocks (Videnova-Adrabińska 1996b). The phase diagram of a related urea-dicarboxylic co-crystal has also been reported (Chadwick et al., 2009). In this contribution, we report the title compound with Urea–adipic acid cocrystals (2:1) which form an extensively hydrogen-bonded three-dimensional supramolecular architecture.
The asymmetric unit contains two urea molecules and two half-adipic acid molecules, with the complete adipic acid molecule generated via crystallographic inversion symmetry (Fig. 1). The carboxylic groups of adipic acid connect with the corresponding urea molecules and inter-urea through O4–H4C···O5, N2–H2A···O3 and N1–H1A···O5iii (Table. 1) hydrogen bonds generating a one-dimensional chain along [110] (Fig. 2). Nearby, mutually perpendicular chairs are connected in a similar fashion forming a chain with O2–H2E···O6, N3–H3A···O1 and N4–H4A···O6v hydrogen bond interactions. Additional weak inter-chain O–H···O and N–H···O intermolecular interactions (Table. 1) support an extensive three-dimensional network, which consolidates the crystal packing (Fig. 3).