organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Urea–adipic acid (2/1)

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 30 March 2011; accepted 22 April 2011; online 7 May 2011)

The asymmetric unit of the title co-crystal, 2CH4N2O·C6H10O4, contains two urea mol­ecules and two half-mol­ecules of adipic acid; the latter are completed by crystallographic inversion symmetry. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen bonds, generating a chain along [110]. Additional weak inter-chain O—H⋯O and N—H⋯O inter­molecular inter­actions lead to the formation of a three-dimensional network.

Related literature

For urea inclusion compounds, see: Videnova-Adrabińska (1996a[Videnova-Adrabińska, V. (1996a). Acta Cryst. B52, 1048-1056.]); Harris & Thomas (1990[Harris, K. D. M. & Thomas, J. M. (1990). J. Chem. Soc. Faraday Trans. pp. 2985-2996]); Yeo et al. (1997[Yeo, L., Harris, K. D. M. & Guillaume, F. (1997). J. Solid State Chem. 128, 273-281.]). For urea–dicarb­oxy­lic acid co-crystal engineering with predesigned crystal building blocks, see: Videnova-Adrabińska (1996b[Videnova-Adrabińska, V. (1996b). J. Mol. Struct. 374, 199-222.]). For a urea-dicarb­oxy­lic acid co-crystal with a phase diagram, see: Chadwick et al. (2009[Chadwick, K., Davey, R., Sadiq, G., Cross, W. & Pritchard, R. (2009). CrystEngComm, 11, 412-414.]).

[Scheme 1]

Experimental

Crystal data
  • 2CH4N2O·C6H10O4

  • Mr = 266.26

  • Triclinic, [P \overline 1]

  • a = 7.2484 (14) Å

  • b = 7.6965 (15) Å

  • c = 11.964 (2) Å

  • α = 101.81 (3)°

  • β = 92.55 (3)°

  • γ = 91.92 (3)°

  • V = 652.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.26 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.980

  • 6479 measured reflections

  • 2949 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.186

  • S = 1.11

  • 2949 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2E⋯O6 0.84 1.78 2.611 (3) 173
O4—H4C⋯O5 0.84 1.77 2.588 (3) 167
N1—H1A⋯O5i 0.86 2.09 2.942 (3) 172
N1—H1B⋯O2ii 0.86 2.42 3.203 (3) 151
N2—H2A⋯O3 0.86 2.20 3.031 (4) 164
N2—H2B⋯O2ii 0.86 2.38 3.171 (4) 154
N3—H3A⋯O1 0.86 2.08 2.912 (4) 163
N3—H3B⋯O4 0.86 2.34 3.049 (3) 140
N4—H4A⋯O6iii 0.86 2.11 2.956 (3) 170
N4—H4B⋯O3iv 0.86 2.26 3.055 (3) 155
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1; (iii) -x, -y+2, -z+2; (iv) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is considerable interest in the structural and dynamic properties of urea inclusion compounds. In these solids (Videnova-Adrabińska, 1996a), the urea molecules form an extensively hydrogen-bonded host structure (Harris et al., 1990), containing linear, parallel tunnels with guest molecules packed densely along these tunnels (Yeo et al., 1997). This crystal structure study is part of a broader program of urea-dicarboxylic acid cocrystal engineering with predesigned crystal building blocks (Videnova-Adrabińska 1996b). The phase diagram of a related urea-dicarboxylic co-crystal has also been reported (Chadwick et al., 2009). In this contribution, we report the title compound with Urea–adipic acid cocrystals (2:1) which form an extensively hydrogen-bonded three-dimensional supramolecular architecture.

The asymmetric unit contains two urea molecules and two half-adipic acid molecules, with the complete adipic acid molecule generated via crystallographic inversion symmetry (Fig. 1). The carboxylic groups of adipic acid connect with the corresponding urea molecules and inter-urea through O4–H4C···O5, N2–H2A···O3 and N1–H1A···O5iii (Table. 1) hydrogen bonds generating a one-dimensional chain along [110] (Fig. 2). Nearby, mutually perpendicular chairs are connected in a similar fashion forming a chain with O2–H2E···O6, N3–H3A···O1 and N4–H4A···O6v hydrogen bond interactions. Additional weak inter-chain O–H···O and N–H···O intermolecular interactions (Table. 1) support an extensive three-dimensional network, which consolidates the crystal packing (Fig. 3).

Related literature top

For urea inclusion compounds, see: Videnova-Adrabińska (1996a); Harris & Thomas (1990); Yeo et al. (1997). For urea–dicarboxylic acid co-crystal engineering with predesigned crystal building blocks, see: Videnova-Adrabińska (1996b). For a urea-dicarboxylic acid co-crystal with a phase diagram, see: Chadwick et al. (2009).

Experimental top

Adipic acid (0.0371 g, 0.25 mmol) and urea (0.0360 g, 0.60 mmol) were dissolved in 15 ml water (pH = 3.11) under stirring. After slow evaporation of the solution for one week at 50°C, colorless block crystals were formed.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.97 Å, N–H distances 0.86Å and Uiso(H) = 1.2 Ueq(C, N). H atoms attached to O atoms were found in a difference Fourier map and then refined using the riding model, with O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title co-crystal. Displacement ellipsoids are shown at the 45% probability level.(#1 = -x + 2, -y + 1, -z + 2; #2 = -x, -y, -z + 1)
[Figure 2] Fig. 2. One-dimensional chain of the title co-crystal viewed along the b axis. O–H···O and N–H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title co-crystal viewed down the a axis. O–H···O and N–H···O hydrogen bonds are shown as dashed lines.
Urea–adipic acid (2/1) top
Crystal data top
2CH4N2O·C6H10O4Z = 2
Mr = 266.26F(000) = 284
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2484 (14) ÅCell parameters from 3579 reflections
b = 7.6965 (15) Åθ = 3.2–27.5°
c = 11.964 (2) ŵ = 0.12 mm1
α = 101.81 (3)°T = 293 K
β = 92.55 (3)°Block, colorless
γ = 91.92 (3)°0.35 × 0.26 × 0.18 mm
V = 652.0 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2949 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.965, Tmax = 0.980k = 99
6479 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4241P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2949 reflectionsΔρmax = 0.37 e Å3
164 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (9)
Crystal data top
2CH4N2O·C6H10O4γ = 91.92 (3)°
Mr = 266.26V = 652.0 (2) Å3
Triclinic, P1Z = 2
a = 7.2484 (14) ÅMo Kα radiation
b = 7.6965 (15) ŵ = 0.12 mm1
c = 11.964 (2) ÅT = 293 K
α = 101.81 (3)°0.35 × 0.26 × 0.18 mm
β = 92.55 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2949 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1457 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.980Rint = 0.048
6479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.11Δρmax = 0.37 e Å3
2949 reflectionsΔρmin = 0.35 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5934 (4)0.6694 (4)0.8940 (2)0.0678 (8)
O20.5075 (3)0.7886 (3)1.06743 (19)0.0478 (6)
H2E0.41870.82161.03080.072*
C10.6238 (4)0.7000 (4)0.9963 (3)0.0408 (7)
C20.7946 (4)0.6471 (4)1.0527 (3)0.0443 (8)
H2C0.76000.59411.11600.053*
H2D0.87160.75301.08380.053*
C30.9073 (4)0.5167 (4)0.9733 (3)0.0435 (8)
H3C0.83680.40460.95060.052*
H3D0.92760.56220.90480.052*
O30.1850 (4)0.3529 (3)0.37617 (19)0.0552 (7)
O40.2542 (3)0.5187 (3)0.54892 (18)0.0500 (6)
H4C0.29800.59160.51300.075*
C40.1849 (4)0.3734 (4)0.4793 (3)0.0399 (7)
C50.1037 (5)0.2411 (4)0.5417 (3)0.0438 (8)
H5A0.00370.29530.58570.053*
H5B0.19770.21460.59520.053*
C60.0300 (4)0.0679 (4)0.4655 (3)0.0422 (8)
H6A0.12530.01900.41530.051*
H6B0.07450.09140.41820.051*
O50.3998 (3)0.7766 (3)0.46884 (18)0.0477 (6)
C70.4225 (4)0.7824 (4)0.3659 (3)0.0404 (7)
N10.4904 (4)0.9306 (3)0.3376 (2)0.0522 (8)
H1A0.51911.02320.39000.063*
H1B0.50540.93320.26710.063*
N20.3789 (5)0.6436 (4)0.2825 (2)0.0600 (9)
H2A0.33410.54690.29820.072*
H2B0.39530.64990.21270.072*
O60.2201 (3)0.9024 (3)0.96911 (17)0.0419 (6)
C80.1495 (4)0.8482 (4)0.8697 (3)0.0370 (7)
N30.2432 (4)0.7456 (4)0.7892 (2)0.0564 (8)
H3A0.35320.71610.80530.068*
H3B0.19350.70930.72150.068*
N40.0194 (4)0.8939 (3)0.8407 (2)0.0466 (7)
H4A0.08150.96150.89040.056*
H4B0.06600.85580.77230.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0634 (17)0.0839 (18)0.0446 (16)0.0303 (14)0.0110 (13)0.0150 (13)
O20.0428 (13)0.0601 (14)0.0419 (13)0.0105 (11)0.0071 (10)0.0118 (11)
C10.0391 (18)0.0333 (15)0.048 (2)0.0012 (13)0.0018 (15)0.0027 (14)
C20.0412 (18)0.0391 (16)0.052 (2)0.0007 (14)0.0008 (15)0.0094 (15)
C30.0404 (18)0.0329 (15)0.055 (2)0.0023 (13)0.0013 (15)0.0056 (14)
O30.0784 (18)0.0461 (13)0.0371 (14)0.0182 (12)0.0011 (12)0.0028 (10)
O40.0681 (16)0.0402 (12)0.0383 (13)0.0146 (11)0.0061 (11)0.0023 (10)
C40.0424 (18)0.0352 (15)0.0406 (19)0.0028 (13)0.0007 (14)0.0056 (13)
C50.0489 (19)0.0397 (16)0.0441 (19)0.0006 (14)0.0061 (15)0.0117 (14)
C60.0426 (18)0.0365 (15)0.0493 (19)0.0005 (13)0.0053 (15)0.0124 (14)
O50.0645 (16)0.0396 (12)0.0363 (13)0.0118 (11)0.0069 (11)0.0023 (9)
C70.0412 (18)0.0370 (16)0.0407 (18)0.0024 (13)0.0043 (14)0.0028 (13)
N10.074 (2)0.0440 (15)0.0369 (15)0.0141 (14)0.0108 (14)0.0057 (12)
N20.090 (2)0.0472 (16)0.0367 (16)0.0175 (16)0.0021 (15)0.0016 (13)
O60.0444 (13)0.0450 (12)0.0329 (12)0.0059 (10)0.0015 (10)0.0004 (9)
C80.0424 (18)0.0330 (15)0.0346 (17)0.0004 (13)0.0029 (14)0.0049 (13)
N30.063 (2)0.0648 (18)0.0359 (16)0.0191 (16)0.0028 (14)0.0042 (13)
N40.0459 (17)0.0509 (15)0.0399 (15)0.0055 (13)0.0052 (12)0.0032 (12)
Geometric parameters (Å, º) top
O1—C11.207 (4)C6—C6ii1.522 (6)
O2—C11.329 (4)C6—H6A0.9700
O2—H2E0.8383C6—H6B0.9700
C1—C21.492 (4)O5—C71.259 (4)
C2—C31.520 (4)C7—N21.323 (4)
C2—H2C0.9700C7—N11.339 (4)
C2—H2D0.9700N1—H1A0.8600
C3—C3i1.515 (6)N1—H1B0.8600
C3—H3C0.9700N2—H2A0.8600
C3—H3D0.9700N2—H2B0.8600
O3—C41.212 (4)O6—C81.257 (3)
O4—C41.319 (4)C8—N41.335 (4)
O4—H4C0.8357C8—N31.340 (4)
C4—C51.500 (4)N3—H3A0.8600
C5—C61.518 (4)N3—H3B0.8600
C5—H5A0.9700N4—H4A0.8600
C5—H5B0.9700N4—H4B0.8600
C1—O2—H2E110.5H5A—C5—H5B107.5
O1—C1—O2121.8 (3)C5—C6—C6ii112.1 (3)
O1—C1—C2123.4 (3)C5—C6—H6A109.2
O2—C1—C2114.8 (3)C6ii—C6—H6A109.2
C1—C2—C3113.9 (3)C5—C6—H6B109.2
C1—C2—H2C108.8C6ii—C6—H6B109.2
C3—C2—H2C108.8H6A—C6—H6B107.9
C1—C2—H2D108.8O5—C7—N2121.3 (3)
C3—C2—H2D108.8O5—C7—N1120.7 (3)
H2C—C2—H2D107.7N2—C7—N1118.0 (3)
C3i—C3—C2113.4 (3)C7—N1—H1A120.0
C3i—C3—H3C108.9C7—N1—H1B120.0
C2—C3—H3C108.9H1A—N1—H1B120.0
C3i—C3—H3D108.9C7—N2—H2A120.0
C2—C3—H3D108.9C7—N2—H2B120.0
H3C—C3—H3D107.7H2A—N2—H2B120.0
C4—O4—H4C111.7O6—C8—N4121.0 (3)
O3—C4—O4122.7 (3)O6—C8—N3120.8 (3)
O3—C4—C5124.5 (3)N4—C8—N3118.1 (3)
O4—C4—C5112.8 (3)C8—N3—H3A120.0
C4—C5—C6114.8 (3)C8—N3—H3B120.0
C4—C5—H5A108.6H3A—N3—H3B120.0
C6—C5—H5A108.6C8—N4—H4A120.0
C4—C5—H5B108.6C8—N4—H4B120.0
C6—C5—H5B108.6H4A—N4—H4B120.0
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O60.841.782.611 (3)173
O4—H4C···O50.841.772.588 (3)167
N1—H1A···O5iii0.862.092.942 (3)172
N1—H1B···O2iv0.862.423.203 (3)151
N2—H2A···O30.862.203.031 (4)164
N2—H2B···O2iv0.862.383.171 (4)154
N3—H3A···O10.862.082.912 (4)163
N3—H3B···O40.862.343.049 (3)140
N4—H4A···O6v0.862.112.956 (3)170
N4—H4B···O3vi0.862.263.055 (3)155
Symmetry codes: (iii) x+1, y+2, z+1; (iv) x, y, z1; (v) x, y+2, z+2; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2CH4N2O·C6H10O4
Mr266.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2484 (14), 7.6965 (15), 11.964 (2)
α, β, γ (°)101.81 (3), 92.55 (3), 91.92 (3)
V3)652.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.26 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.965, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6479, 2949, 1457
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.186, 1.11
No. of reflections2949
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O60.841.782.611 (3)173
O4—H4C···O50.841.772.588 (3)167
N1—H1A···O5i0.862.092.942 (3)172
N1—H1B···O2ii0.862.423.203 (3)151
N2—H2A···O30.862.203.031 (4)164
N2—H2B···O2ii0.862.383.171 (4)154
N3—H3A···O10.862.082.912 (4)163
N3—H3B···O40.862.343.049 (3)140
N4—H4A···O6iii0.862.112.956 (3)170
N4—H4B···O3iv0.862.263.055 (3)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x, y+2, z+2; (iv) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationChadwick, K., Davey, R., Sadiq, G., Cross, W. & Pritchard, R. (2009). CrystEngComm, 11, 412–414.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarris, K. D. M. & Thomas, J. M. (1990). J. Chem. Soc. Faraday Trans. pp. 2985–2996  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVidenova-Adrabińska, V. (1996a). Acta Cryst. B52, 1048–1056.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationVidenova-Adrabińska, V. (1996b). J. Mol. Struct. 374, 199–222.  Google Scholar
First citationYeo, L., Harris, K. D. M. & Guillaume, F. (1997). J. Solid State Chem. 128, 273–281.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds