organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,5,6-Tetra­methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 3 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C18H18O2S, the phenyl ring makes a dihedral angle of 87.47 (6)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For structural studies of related 2-methyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1143.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1395.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1476.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O2S

  • Mr = 298.38

  • Monoclinic, P 21 /c

  • a = 14.2611 (5) Å

  • b = 6.0661 (2) Å

  • c = 17.2436 (7) Å

  • β = 99.740 (2)°

  • V = 1470.23 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.29 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 0.746

  • 25036 measured reflections

  • 3397 independent reflections

  • 2888 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.155

  • S = 1.04

  • 3397 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.35 3.286 (3) 169
C10—H10A⋯O2ii 0.98 2.56 3.517 (3) 167
C12—H12CCgiii 0.98 2.66 3.482 (3) 142
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, a series of compounds containing the benzofuran ring system have been shown to exhibit significant pharmacological properties such as antibacterial, antifungal, antitumor, antiviral, and antimicrobial activities (Aslam et al. , 2009, Galal et al. , 2009, Khan et al. , 2005). These types of compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al. , 2003). As a part of our study of the substituent effect on the solid state structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2008a,b,c), we report hrerin the crystal structure of the title compound, C18H18O2S.

In the title compound (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (1) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring makes a dihedral angle of 87.47 (6)° with the mean plane of the benzofuran fragment. Crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1 & Fig. 2) and weak C—H···Cg π–ring interactions (Table 1 & Fig 3; Cg is the centroid of the C2–C7 benzene ring).

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 2-methyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2008a,b,c).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2,4,5,6-tetramethyl-3-phenylsulfanyl-1-benzofuran (310 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 74%, m.p. 438–439 K; Rf = 0.51 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.99 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Bruker, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the weak C—H···O interactions (dotted lines) in the crystal packing of the title compound. [Symmetry codes: (i) x, - y + 1/2 , z - 1/2; (ii) - x, - y + 1, - z + 1; (iv) x, - y + 1/2, z + 1/2.]
[Figure 3] Fig. 3. A view of the weak C—H···Cg π-ring intermolecular interactions (dotted lines) in the crystal packing of the title compound. [Symmetry codes: (iii) x, y - 1, z.]
2,4,5,6-Tetramethyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C18H18O2SF(000) = 632
Mr = 298.38Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7044 reflections
a = 14.2611 (5) Åθ = 2.4–27.5°
b = 6.0661 (2) ŵ = 0.22 mm1
c = 17.2436 (7) ÅT = 173 K
β = 99.740 (2)°Block, colourless
V = 1470.23 (9) Å30.29 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3397 independent reflections
Radiation source: rotating anode2888 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.050
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.5°
ϕ and ω scansh = 1817
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 77
Tmin = 0.622, Tmax = 0.746l = 2222
25036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: difference Fourier map
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0691P)2 + 1.9351P]
where P = (Fo2 + 2Fc2)/3
3397 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C18H18O2SV = 1470.23 (9) Å3
Mr = 298.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2611 (5) ŵ = 0.22 mm1
b = 6.0661 (2) ÅT = 173 K
c = 17.2436 (7) Å0.29 × 0.20 × 0.14 mm
β = 99.740 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3397 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2888 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.746Rint = 0.050
25036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 1.20 e Å3
3397 reflectionsΔρmin = 0.56 e Å3
188 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28526 (4)0.15501 (10)0.58076 (4)0.03155 (19)
O10.27241 (11)0.1859 (3)0.35463 (10)0.0271 (4)
O20.19888 (14)0.1527 (3)0.61794 (11)0.0420 (5)
C10.25752 (15)0.2287 (4)0.48136 (13)0.0251 (5)
C20.20419 (15)0.4077 (3)0.43714 (12)0.0219 (4)
C30.14688 (15)0.5842 (4)0.45266 (12)0.0225 (4)
C40.10995 (15)0.7234 (4)0.39007 (13)0.0233 (4)
C50.12764 (15)0.6842 (4)0.31306 (13)0.0239 (4)
C60.18162 (15)0.5044 (4)0.29734 (13)0.0245 (5)
H60.19300.47390.24570.029*
C70.21775 (15)0.3723 (3)0.36019 (13)0.0230 (4)
C80.29453 (16)0.1033 (4)0.42877 (14)0.0275 (5)
C90.12387 (18)0.6209 (4)0.53373 (14)0.0302 (5)
H9A0.13790.48660.56510.045*
H9B0.05630.65720.52970.045*
H9C0.16240.74280.55920.045*
C100.04905 (17)0.9172 (4)0.40466 (15)0.0317 (5)
H10A0.01800.87280.39560.048*
H10B0.05811.03740.36870.048*
H10C0.06750.96720.45910.048*
C110.08671 (18)0.8332 (4)0.24575 (14)0.0320 (5)
H11A0.10340.77600.19670.048*
H11B0.11280.98190.25550.048*
H11C0.01730.83840.24130.048*
C120.35458 (14)0.0982 (3)0.43559 (11)0.0378 (6)
H12A0.36460.15100.49010.057*
H12B0.41620.06360.42050.057*
H12C0.32260.21290.40070.057*
C130.35299 (11)0.3951 (3)0.61796 (9)0.0275 (5)
C140.43833 (10)0.4325 (2)0.59220 (10)0.0327 (5)
H140.45670.34310.55210.039*
C150.49648 (19)0.6014 (5)0.62557 (17)0.0423 (7)
H150.55560.62780.60880.051*
C160.4686 (2)0.7322 (5)0.68343 (17)0.0456 (7)
H160.50830.84950.70590.055*
C170.3838 (2)0.6929 (5)0.70828 (17)0.0452 (7)
H170.36470.78400.74760.054*
C180.32583 (18)0.5214 (5)0.67638 (15)0.0370 (6)
H180.26790.49140.69470.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0337 (3)0.0300 (3)0.0297 (3)0.0058 (2)0.0016 (2)0.0081 (2)
O10.0258 (8)0.0250 (8)0.0309 (9)0.0009 (6)0.0059 (7)0.0045 (6)
O20.0397 (10)0.0523 (12)0.0347 (10)0.0122 (9)0.0086 (8)0.0101 (8)
C10.0245 (11)0.0244 (10)0.0256 (11)0.0046 (8)0.0017 (8)0.0033 (8)
C20.0219 (10)0.0221 (10)0.0213 (10)0.0044 (8)0.0024 (8)0.0005 (8)
C30.0207 (10)0.0256 (10)0.0217 (10)0.0055 (8)0.0052 (8)0.0042 (8)
C40.0194 (10)0.0244 (10)0.0269 (11)0.0021 (8)0.0062 (8)0.0016 (8)
C50.0204 (10)0.0266 (10)0.0238 (11)0.0028 (8)0.0017 (8)0.0010 (8)
C60.0252 (11)0.0294 (11)0.0194 (10)0.0028 (8)0.0049 (8)0.0032 (8)
C70.0200 (10)0.0226 (10)0.0264 (11)0.0017 (8)0.0037 (8)0.0051 (8)
C80.0225 (11)0.0236 (10)0.0355 (12)0.0035 (8)0.0025 (9)0.0002 (9)
C90.0330 (12)0.0349 (12)0.0245 (11)0.0019 (9)0.0102 (9)0.0039 (9)
C100.0283 (12)0.0305 (12)0.0373 (13)0.0050 (9)0.0085 (10)0.0017 (10)
C110.0336 (13)0.0339 (12)0.0274 (12)0.0009 (10)0.0017 (10)0.0054 (10)
C120.0329 (13)0.0263 (12)0.0535 (16)0.0031 (10)0.0051 (12)0.0010 (11)
C130.0255 (11)0.0303 (11)0.0249 (11)0.0017 (9)0.0013 (9)0.0069 (9)
C140.0273 (12)0.0362 (13)0.0342 (13)0.0013 (10)0.0041 (10)0.0017 (10)
C150.0318 (14)0.0471 (16)0.0460 (16)0.0116 (11)0.0011 (12)0.0062 (12)
C160.0509 (17)0.0362 (14)0.0429 (16)0.0085 (12)0.0119 (13)0.0010 (12)
C170.0554 (18)0.0440 (15)0.0322 (14)0.0096 (13)0.0046 (12)0.0070 (12)
C180.0327 (13)0.0504 (15)0.0271 (12)0.0049 (11)0.0024 (10)0.0034 (11)
Geometric parameters (Å, º) top
S1—O21.482 (2)C10—H10A0.9800
S1—C11.751 (2)C10—H10B0.9800
S1—C131.8046 (18)C10—H10C0.9800
O1—C81.359 (3)C11—H11A0.9800
O1—C71.386 (3)C11—H11B0.9800
C1—C81.357 (3)C11—H11C0.9800
C1—C21.463 (3)C12—H12A0.9800
C2—C71.390 (3)C12—H12B0.9800
C2—C31.400 (3)C12—H12C0.9800
C3—C41.401 (3)C13—C181.372 (3)
C3—C91.506 (3)C13—C141.3830
C4—C51.413 (3)C14—C151.381 (3)
C4—C101.508 (3)C14—H140.9500
C5—C61.388 (3)C15—C161.385 (4)
C5—C111.508 (3)C15—H150.9500
C6—C71.376 (3)C16—C171.370 (5)
C6—H60.9500C16—H160.9500
C8—C121.486 (3)C17—C181.384 (4)
C9—H9A0.9800C17—H170.9500
C9—H9B0.9800C18—H180.9500
C9—H9C0.9800
O2—S1—C1111.05 (11)C4—C10—H10B109.5
O2—S1—C13106.72 (10)H10A—C10—H10B109.5
C1—S1—C1399.25 (9)C4—C10—H10C109.5
C8—O1—C7106.22 (17)H10A—C10—H10C109.5
C8—C1—C2107.1 (2)H10B—C10—H10C109.5
C8—C1—S1117.52 (18)C5—C11—H11A109.5
C2—C1—S1135.31 (18)C5—C11—H11B109.5
C7—C2—C3118.7 (2)H11A—C11—H11B109.5
C7—C2—C1103.83 (19)C5—C11—H11C109.5
C3—C2—C1137.4 (2)H11A—C11—H11C109.5
C2—C3—C4117.98 (19)H11B—C11—H11C109.5
C2—C3—C9121.1 (2)C8—C12—H12A109.5
C4—C3—C9120.9 (2)C8—C12—H12B109.5
C3—C4—C5121.3 (2)H12A—C12—H12B109.5
C3—C4—C10119.6 (2)C8—C12—H12C109.5
C5—C4—C10119.2 (2)H12A—C12—H12C109.5
C6—C5—C4120.6 (2)H12B—C12—H12C109.5
C6—C5—C11118.4 (2)C18—C13—C14121.16 (15)
C4—C5—C11121.0 (2)C18—C13—S1120.72 (16)
C7—C6—C5116.7 (2)C14—C13—S1117.72 (6)
C7—C6—H6121.6C15—C14—C13119.12 (16)
C5—C6—H6121.6C15—C14—H14120.4
C6—C7—O1124.1 (2)C13—C14—H14120.4
C6—C7—C2124.6 (2)C14—C15—C16120.0 (2)
O1—C7—C2111.25 (19)C14—C15—H15120.0
C1—C8—O1111.6 (2)C16—C15—H15120.0
C1—C8—C12133.8 (2)C17—C16—C15120.1 (3)
O1—C8—C12114.61 (19)C17—C16—H16119.9
C3—C9—H9A109.5C15—C16—H16119.9
C3—C9—H9B109.5C16—C17—C18120.4 (3)
H9A—C9—H9B109.5C16—C17—H17119.8
C3—C9—H9C109.5C18—C17—H17119.8
H9A—C9—H9C109.5C13—C18—C17119.2 (2)
H9B—C9—H9C109.5C13—C18—H18120.4
C4—C10—H10A109.5C17—C18—H18120.4
O2—S1—C1—C8132.93 (19)C8—O1—C7—C6179.6 (2)
C13—S1—C1—C8115.04 (18)C8—O1—C7—C20.6 (2)
O2—S1—C1—C250.2 (3)C3—C2—C7—C62.6 (3)
C13—S1—C1—C261.8 (2)C1—C2—C7—C6178.8 (2)
C8—C1—C2—C71.7 (2)C3—C2—C7—O1177.22 (18)
S1—C1—C2—C7175.39 (19)C1—C2—C7—O11.4 (2)
C8—C1—C2—C3176.5 (2)C2—C1—C8—O11.4 (2)
S1—C1—C2—C36.4 (4)S1—C1—C8—O1176.26 (14)
C7—C2—C3—C43.2 (3)C2—C1—C8—C12179.9 (2)
C1—C2—C3—C4178.8 (2)S1—C1—C8—C122.2 (4)
C7—C2—C3—C9175.6 (2)C7—O1—C8—C10.6 (2)
C1—C2—C3—C92.4 (4)C7—O1—C8—C12179.34 (18)
C2—C3—C4—C51.7 (3)O2—S1—C13—C186.54 (19)
C9—C3—C4—C5177.1 (2)C1—S1—C13—C18121.94 (17)
C2—C3—C4—C10179.1 (2)O2—S1—C13—C14179.34 (9)
C9—C3—C4—C102.1 (3)C1—S1—C13—C1465.26 (9)
C3—C4—C5—C60.7 (3)C18—C13—C14—C150.62 (19)
C10—C4—C5—C6178.5 (2)S1—C13—C14—C15173.38 (18)
C3—C4—C5—C11179.3 (2)C13—C14—C15—C160.7 (3)
C10—C4—C5—C110.1 (3)C14—C15—C16—C170.7 (4)
C4—C5—C6—C71.4 (3)C15—C16—C17—C180.6 (4)
C11—C5—C6—C7180.0 (2)C14—C13—C18—C171.9 (3)
C5—C6—C7—O1179.54 (19)S1—C13—C18—C17174.44 (19)
C5—C6—C7—C20.3 (3)C16—C17—C18—C131.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.353.286 (3)169
C10—H10A···O2ii0.982.563.517 (3)167
C12—H12C···Cgiii0.982.663.482 (3)142
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H18O2S
Mr298.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.2611 (5), 6.0661 (2), 17.2436 (7)
β (°) 99.740 (2)
V3)1470.23 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.29 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.622, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
25036, 3397, 2888
Rint0.050
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.04
No. of reflections3397
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97 (Bruker, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.353.286 (3)169.1
C10—H10A···O2ii0.982.563.517 (3)166.9
C12—H12C···Cgiii0.982.663.482 (3)141.8
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y1, z.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008c). Acta Cryst. E64, o1476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds