organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­fluoro-2,2′-{[(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis­­(methyl­ene)]}diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 7 May 2011; accepted 24 May 2011; online 28 May 2011)

In the crystal structure of the title compound, C21H24F2N2O2, the two N atoms of the imidazolidine moiety are linked to the hy­droxy groups by intra­molecular O—H⋯N hydrogen-bonding inter­actions. The crystal studied was a racemic mixture of RR and SS enatiomers. The cyclo­hexane ring adopts a chair conformation and the imidazolidine group to which it is fused has a twisted envelope conformation.

Related literature

For related structures, see: Rivera et al. (2010a[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010a). Acta Cryst. E66, o931.],b[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010b). Acta Cryst. E66, o2643.], 2011[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.]). For uses of di-Mannich bases, see: Mitra et al. (2006[Mitra, A., Harvey, M. J., Proffitt, M. K., DePue, L. J., Parkin, S. & Atwood, D. A. (2006). J. Organomet. Chem. 69, 523-528.]); Elias et al. (1997[Elias, H., Stock, F. & Röhr, C. (1997). Acta Cryst. C53, 862-864.]). For related quantum-chemical literature, see: Zierkiewicz & Michalska (2003[Zierkiewicz, W. & Michalska, D. (2003). J. Phys. Chem. A, 107, 4547-4554.]); Zierkiewicz et al. (2004[Zierkiewicz, W., Michalska, D. & Hobza, P. (2004). Chem. Phys. Lett. 386, 95-100.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24F2N2O2

  • Mr = 374.4

  • Triclinic, [P \overline 1]

  • a = 5.4605 (1) Å

  • b = 12.4661 (3) Å

  • c = 14.3363 (4) Å

  • α = 108.053 (3)°

  • β = 91.319 (2)°

  • γ = 97.437 (2)°

  • V = 917.98 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 150 K

  • 0.36 × 0.23 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.516, Tmax = 1

  • 15846 measured reflections

  • 3248 independent reflections

  • 2819 reflections with I > 3σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.95

  • 3248 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.88 (2) 1.92 (2) 2.7105 (15) 147.6 (19)
O2—H2o⋯N2 0.83 (2) 1.95 (2) 2.6975 (16) 148 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The title compound was obtained by a Mannich type reaction between the aminal (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane and p-fluorophenol. The crystal structure of the title compound was determined as a racemic mixture having (R,R) or (S,S) configurations at the two stereogenic centers and it crystallizes in a centrosymmetric space group. The chiral centers were not affected when the aminal cage reacted, so the title compound is a trans-rac mixture. The molecular structure and atom-numbering scheme for the title compound are shown in Fig. 1. The crystal structure of the title confirms the presence of intramolecular hydrogen bonds between the phenolic hydroxyl groups and nitrogen atoms (Table 1). The C—O bond lengths [C10—O1, 1.3682 (17) Å; C17—O2, 1.3706 (18) Å] and the N···O distances (Table 1) are longer than the values observed in related structures where the p-substituents in the aromatic rings are chloride or bromide (Rivera, et al. 2010b and 2011), showing a decrease in hydrogen-bonding strength. The slight elongation of the C—O bond in the title compound could be explained by the presence of a fluorine substituent, since theoretical results using MP2 and density functional (B3LYP) methods showed that the chlorine and bromine substituents caused a shortening of this bond by a presumable contribution of these halogens in a quinoid-type structure by resonance (mesomeric) effects (Zierkiewicz, et al. 2003), and an electron donation from the pz-orbital on the oxygen atom to π* acceptor orbitals in the ring, which was not observed in p-fluorophenol where an inductive effect and a strong delocalization of electron density from the pz-orbital on the F atom to π* acceptor orbitals in the ring are predominant, leading to a suppression of electron donation from the pz-orbital on the oxygen atom to the aromatic ring (Zierkiewicz, et al. 2004).

The crystal structure showed an angular deformation in the phenol ring which is caused by the presence of the fluorine atom: the C12—C13—C14 and C19—C20—C21 internal ring angles [both 122.7 (1) °] increase by about 3.53° compared to the value of the corresponding angles in the phenol derivative (Rivera, et al. 2010a). The structural changes of the aromatic ring are governed chiefly by the electronegativity of the fluorine substituent (inductive electron withdrawal), which is reflected in an elongation of C-O bond.

Related literature top

For related structures, see: Rivera et al. (2010a,b, 2011). For uses of di-Mannich bases, see: Mitra et al. (2006); Elias et al. (1997). For related quantum-chemical literature, see: Zierkiewicz & Michalska (2003); Zierkiewicz et al. (2004).

Experimental top

Physical Measurements

The melting point was determined with an Electrothermal apparatus, and it has not been corrected. IR spectrum was recorded as KBr pellets at 292 K on a Perkin-Elmer Paragon FT—IR instrument. NMR spectra were performed in CDCl3 at room temperature on a Bruker AMX 400 Avance spectrometer.

Preparation of 4,4'-Difluoro-{[2,2'-(3aRS,7aRS)-2,3,3a,4,5,6,7,7a-octahydro-1H-1,3- benzimidazole-1,3-diyl]bis(methylene)}diphenol

To a solution of(2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo [8.8.1.18, 17˙02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml) in a two-necked round-bottomed flask, prepared beforehand following previously described procedures, was added dropwise a dioxane solution (3 ml) containing two equivalents of p-fluorophenol (224 mg, 2.00 mmol). The mixture was refluxed for about 6 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 25%, m.p. = 443–447 K). Single crystals were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to C atoms were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2*U~eq~ of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Displacement elipsoid plot of the title compound, drawn at 50% probability level.
4-fluoro-2-({3-[(5-fluoro-2-hydroxyphenyl)methyl]-2,3,3a,4,5,6,7,7a-octahydro- 1H-1,3-benzodiazol-1-yl}methyl)phenol top
Crystal data top
C21H24F2N2O2Z = 2
Mr = 374.4F(000) = 396
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Melting point: 445 K
a = 5.4605 (1) ÅCu Kα radiation, λ = 1.5418 Å
b = 12.4661 (3) ÅCell parameters from 8506 reflections
c = 14.3363 (4) Åθ = 3.3–67°
α = 108.053 (3)°µ = 0.84 mm1
β = 91.319 (2)°T = 150 K
γ = 97.437 (2)°Prism, colourless
V = 917.98 (4) Å30.36 × 0.23 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3248 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2819 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.3°
Rotation method data acquisition using ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1414
Tmin = 0.516, Tmax = 1l = 1717
15846 measured reflections
Refinement top
Refinement on F290 constraints
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.95(Δ/σ)max = 0.006
3248 reflectionsΔρmax = 0.25 e Å3
250 parametersΔρmin = 0.23 e Å3
0 restraints
Crystal data top
C21H24F2N2O2γ = 97.437 (2)°
Mr = 374.4V = 917.98 (4) Å3
Triclinic, P1Z = 2
a = 5.4605 (1) ÅCu Kα radiation
b = 12.4661 (3) ŵ = 0.84 mm1
c = 14.3363 (4) ÅT = 150 K
α = 108.053 (3)°0.36 × 0.23 × 0.09 mm
β = 91.319 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
3248 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2819 reflections with I > 3σ(I)
Tmin = 0.516, Tmax = 1Rint = 0.024
15846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.95Δρmax = 0.25 e Å3
3248 reflectionsΔρmin = 0.23 e Å3
250 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2009), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8539 (2)0.55112 (8)0.62051 (7)0.0546 (4)
F20.07887 (18)0.52089 (7)0.14954 (7)0.0466 (4)
O10.16405 (19)0.16846 (9)0.53377 (8)0.0378 (4)
O20.43069 (19)0.15534 (9)0.05535 (8)0.0355 (4)
N10.3641 (2)0.10643 (9)0.35698 (7)0.0241 (4)
N20.1999 (2)0.09975 (9)0.20184 (7)0.0239 (4)
C10.3018 (2)0.17945 (11)0.29872 (9)0.0268 (4)
C20.3651 (2)0.00695 (11)0.28492 (9)0.0240 (4)
C30.1458 (2)0.01205 (11)0.21678 (9)0.0239 (4)
C40.1213 (3)0.11590 (11)0.12581 (10)0.0311 (5)
C50.0996 (3)0.22171 (12)0.15961 (11)0.0358 (5)
C60.3115 (3)0.21688 (12)0.23326 (11)0.0367 (5)
C70.3397 (3)0.10836 (12)0.32279 (10)0.0312 (5)
C80.5907 (2)0.15502 (11)0.42136 (9)0.0270 (4)
C90.5514 (2)0.26236 (12)0.50104 (9)0.0267 (4)
C100.3397 (3)0.26295 (12)0.55485 (10)0.0298 (5)
C110.3077 (3)0.35923 (13)0.63185 (10)0.0375 (5)
C120.4816 (3)0.45585 (13)0.65482 (11)0.0404 (5)
C130.6831 (3)0.45507 (13)0.59942 (11)0.0374 (5)
C140.7225 (3)0.36067 (12)0.52322 (10)0.0316 (5)
C150.0045 (2)0.13892 (11)0.15950 (9)0.0262 (4)
C160.0880 (2)0.24381 (11)0.13227 (9)0.0244 (4)
C170.3020 (3)0.24648 (12)0.08027 (9)0.0279 (4)
C180.3842 (3)0.34067 (13)0.05171 (10)0.0343 (5)
C190.2565 (3)0.43379 (13)0.07452 (11)0.0363 (5)
C200.0492 (3)0.43006 (12)0.12624 (10)0.0327 (5)
C210.0371 (3)0.33780 (11)0.15580 (9)0.0282 (5)
H1a0.4497290.2253990.2904120.0321*
H1b0.1770630.2234660.3296590.0321*
H20.5226270.0135460.2569340.0288*
H30.0149250.0226580.2410890.0287*
H4a0.2661140.1127760.0895030.0374*
H4b0.025480.1185460.0865070.0374*
H5a0.0957070.2885870.1034920.0429*
H5b0.0555360.2301870.188560.0429*
H6a0.4637290.2212710.2009740.0441*
H6b0.2843870.2827120.2549880.0441*
H7a0.1948860.1084550.3594830.0375*
H7b0.4860830.1048890.3626470.0375*
H8a0.7232140.1723230.3831130.0324*
H8b0.6358850.1002960.4508020.0324*
H110.1641570.3585310.6691880.0449*
H120.4619370.5222640.7085180.0484*
H140.866150.3629950.4861290.0379*
H15a0.1279040.1561610.2064350.0315*
H15b0.0786380.0795310.1019190.0315*
H180.5304230.3415570.0158940.0411*
H190.3118420.499160.0545860.0435*
H210.1824070.3384810.1923160.0338*
H1o0.188 (4)0.1244 (17)0.4743 (16)0.0566*
H2o0.388 (4)0.1166 (17)0.0919 (14)0.0533*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0699 (7)0.0323 (5)0.0487 (5)0.0063 (5)0.0012 (5)0.0002 (4)
F20.0580 (6)0.0287 (5)0.0574 (6)0.0137 (4)0.0065 (4)0.0169 (4)
O10.0320 (6)0.0477 (6)0.0311 (5)0.0010 (5)0.0061 (4)0.0104 (5)
O20.0357 (6)0.0400 (6)0.0377 (6)0.0126 (5)0.0115 (4)0.0187 (5)
N10.0253 (6)0.0246 (6)0.0216 (5)0.0030 (4)0.0016 (4)0.0067 (4)
N20.0263 (6)0.0227 (5)0.0227 (5)0.0023 (4)0.0016 (4)0.0079 (4)
C10.0307 (7)0.0248 (6)0.0243 (6)0.0026 (5)0.0018 (5)0.0077 (5)
C20.0243 (7)0.0240 (7)0.0236 (6)0.0034 (5)0.0025 (5)0.0072 (5)
C30.0237 (7)0.0244 (6)0.0244 (6)0.0018 (5)0.0020 (5)0.0095 (5)
C40.0357 (8)0.0267 (7)0.0279 (7)0.0034 (6)0.0030 (6)0.0051 (5)
C50.0387 (8)0.0245 (7)0.0404 (8)0.0016 (6)0.0034 (6)0.0065 (6)
C60.0394 (8)0.0248 (7)0.0470 (9)0.0048 (6)0.0028 (7)0.0130 (6)
C70.0327 (8)0.0297 (7)0.0344 (7)0.0031 (6)0.0031 (6)0.0155 (6)
C80.0249 (7)0.0313 (7)0.0230 (6)0.0037 (6)0.0011 (5)0.0063 (5)
C90.0278 (7)0.0305 (7)0.0212 (6)0.0063 (5)0.0023 (5)0.0068 (5)
C100.0287 (7)0.0364 (8)0.0255 (6)0.0070 (6)0.0009 (5)0.0106 (6)
C110.0373 (8)0.0492 (9)0.0266 (7)0.0171 (7)0.0046 (6)0.0085 (6)
C120.0507 (10)0.0369 (8)0.0306 (7)0.0187 (7)0.0013 (7)0.0018 (6)
C130.0448 (9)0.0291 (7)0.0339 (7)0.0023 (6)0.0048 (6)0.0056 (6)
C140.0330 (8)0.0332 (7)0.0266 (7)0.0040 (6)0.0007 (6)0.0072 (6)
C150.0246 (7)0.0282 (7)0.0273 (6)0.0030 (5)0.0013 (5)0.0114 (5)
C160.0258 (7)0.0272 (7)0.0197 (6)0.0011 (5)0.0041 (5)0.0080 (5)
C170.0295 (7)0.0315 (7)0.0234 (6)0.0042 (6)0.0005 (5)0.0099 (5)
C180.0308 (8)0.0423 (8)0.0331 (7)0.0003 (6)0.0026 (6)0.0189 (6)
C190.0409 (9)0.0331 (8)0.0377 (8)0.0027 (6)0.0031 (6)0.0188 (6)
C200.0391 (8)0.0259 (7)0.0329 (7)0.0053 (6)0.0039 (6)0.0094 (6)
C210.0299 (7)0.0294 (7)0.0252 (6)0.0040 (6)0.0005 (5)0.0088 (5)
Geometric parameters (Å, º) top
F1—C131.3668 (17)C6—H6b0.96
F2—C201.3654 (18)C7—H7a0.96
O1—C101.3682 (17)C7—H7b0.96
O1—H1o0.88 (2)C8—C91.5100 (17)
O2—C171.3706 (18)C8—H8a0.96
O2—H2o0.83 (2)C8—H8b0.96
N1—C11.477 (2)C9—C101.4041 (19)
N1—C21.4704 (15)C9—C141.3873 (19)
N1—C81.4686 (16)C10—C111.3897 (18)
N2—C11.4805 (14)C11—C121.380 (2)
N2—C31.4686 (18)C11—H110.96
N2—C151.4652 (19)C12—C131.371 (2)
C1—H1a0.96C12—H120.96
C1—H1b0.96C13—C141.3799 (18)
C2—C31.5100 (19)C14—H140.96
C2—C71.515 (2)C15—C161.507 (2)
C2—H20.96C15—H15a0.96
C3—C41.5151 (16)C15—H15b0.96
C3—H30.96C16—C171.4032 (19)
C4—C51.532 (2)C16—C211.388 (2)
C4—H4a0.96C17—C181.385 (2)
C4—H4b0.96C18—C191.388 (2)
C5—C61.531 (2)C18—H180.96
C5—H5a0.96C19—C201.371 (2)
C5—H5b0.96C19—H190.96
C6—C71.5369 (17)C20—C211.377 (2)
C6—H6a0.96C21—H210.96
C10—O1—H1o106.9 (13)H7a—C7—H7b111.1929
C17—O2—H2o106.8 (14)N1—C8—C9110.50 (11)
C1—N1—C2105.24 (9)N1—C8—H8a109.471
C1—N1—C8112.56 (10)N1—C8—H8b109.471
C2—N1—C8116.09 (11)C9—C8—H8a109.4713
C1—N2—C3105.27 (10)C9—C8—H8b109.4715
C1—N2—C15113.08 (10)H8a—C8—H8b108.4269
C3—N2—C15116.39 (10)C8—C9—C10119.74 (11)
N1—C1—N2105.37 (10)C8—C9—C14121.22 (12)
N1—C1—H1a109.4709C10—C9—C14119.04 (11)
N1—C1—H1b109.4714O1—C10—C9120.76 (11)
N2—C1—H1a109.4715O1—C10—C11118.91 (13)
N2—C1—H1b109.4707C9—C10—C11120.31 (12)
H1a—C1—H1b113.2798C10—C11—C12120.24 (14)
N1—C2—C3100.30 (10)C10—C11—H11119.8818
N1—C2—C7117.55 (11)C12—C11—H11119.8816
N1—C2—H2111.2215C11—C12—C13118.67 (13)
C3—C2—C7111.58 (10)C11—C12—H12120.6647
C3—C2—H2117.2277C13—C12—H12120.6649
C7—C2—H299.8589F1—C13—C12119.05 (12)
N2—C3—C2100.48 (9)F1—C13—C14118.23 (14)
N2—C3—C4116.86 (11)C12—C13—C14122.72 (14)
N2—C3—H3111.6886C9—C14—C13118.97 (13)
C2—C3—C4112.03 (11)C9—C14—H14120.5126
C2—C3—H3116.5452C13—C14—H14120.5134
C4—C3—H3100.0584N2—C15—C16110.43 (10)
C3—C4—C5107.76 (12)N2—C15—H15a109.4707
C3—C4—H4a109.4714N2—C15—H15b109.4709
C3—C4—H4b109.4705C16—C15—H15a109.4714
C5—C4—H4a109.4712C16—C15—H15b109.4718
C5—C4—H4b109.4712H15a—C15—H15b108.497
H4a—C4—H4b111.1273C15—C16—C17119.77 (12)
C4—C5—C6112.74 (11)C15—C16—C21121.39 (12)
C4—C5—H5a109.4709C17—C16—C21118.82 (13)
C4—C5—H5b109.4714O2—C17—C16120.69 (13)
C6—C5—H5a109.4711O2—C17—C18118.90 (13)
C6—C5—H5b109.4715C16—C17—C18120.40 (14)
H5a—C5—H5b105.995C17—C18—C19120.43 (14)
C5—C6—C7112.66 (13)C17—C18—H18119.7837
C5—C6—H6a109.471C19—C18—H18119.7831
C5—C6—H6b109.4713C18—C19—C20118.30 (15)
C7—C6—H6a109.4711C18—C19—H19120.8492
C7—C6—H6b109.4714C20—C19—H19120.8486
H6a—C6—H6b106.0781F2—C20—C19119.22 (14)
C2—C7—C6107.69 (12)F2—C20—C21118.08 (13)
C2—C7—H7a109.4718C19—C20—C21122.70 (14)
C2—C7—H7b109.4711C16—C21—C20119.33 (13)
C6—C7—H7a109.4711C16—C21—H21120.3339
C6—C7—H7b109.4711C20—C21—H21120.3327
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.88 (2)1.92 (2)2.7105 (15)147.6 (19)
O1—H1o···C80.88 (2)2.37 (2)2.8566 (17)115.3 (15)
O2—H2o···N20.83 (2)1.95 (2)2.6975 (16)148 (2)
O2—H2o···C150.83 (2)2.39 (2)2.8541 (17)116.0 (18)

Experimental details

Crystal data
Chemical formulaC21H24F2N2O2
Mr374.4
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.4605 (1), 12.4661 (3), 14.3363 (4)
α, β, γ (°)108.053 (3), 91.319 (2), 97.437 (2)
V3)917.98 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.36 × 0.23 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.516, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
15846, 3248, 2819
Rint0.024
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.95
No. of reflections3248
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.88 (2)1.92 (2)2.7105 (15)147.6 (19)
O2—H2o···N20.83 (2)1.95 (2)2.6975 (16)148 (2)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work, as well as the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationElias, H., Stock, F. & Röhr, C. (1997). Acta Cryst. C53, 862–864.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMitra, A., Harvey, M. J., Proffitt, M. K., DePue, L. J., Parkin, S. & Atwood, D. A. (2006). J. Organomet. Chem. 69, 523–528.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010a). Acta Cryst. E66, o931.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010b). Acta Cryst. E66, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZierkiewicz, W. & Michalska, D. (2003). J. Phys. Chem. A, 107, 4547–4554.  CrossRef CAS Google Scholar
First citationZierkiewicz, W., Michalska, D. & Hobza, P. (2004). Chem. Phys. Lett. 386, 95–100.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds