metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-rac-5-eth­­oxy­carbonyl-6-hy­dr­oxy-6-methyl-4-phenyl-4,5,6,7-tetra­hydro­benzo[c]isoxazol-3-olato)potassium]

aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: orglab@mail.ru

(Received 21 March 2011; accepted 17 May 2011; online 25 May 2011)

The title compound, [K(C17H18NO5)]n, reveals the relative configuration (4R*,5S*,6R*) whereas its crystals are racemic. The cyclo­hexane ring adopts a half-chair conformation and the isoxazole ring has an envelope conformation. The ethyl fragment of the eth­oxy­carbonyl group at position 5 is disordered in a 0.547 (7):0.453 (7) ratio. The K+ ion is surrounded by five O atoms from three ligands at distances ranging from 2.606 (2) to 3.028 (2) Å, generating a three-dimensional network. The crystal packing displays inter­molecular O—H⋯N and O—H⋯O hydrogen bonds in which the hy­droxy group acts as a double proton donor.

Related literature

For background to the microbiological activity of 2-azetidin­one derivatives, see: Wadher et al. (2009[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. PharmTech Res. 1, 22-33.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C17H18NO5)]

  • Mr = 355.42

  • Monoclinic, P 21 /c

  • a = 12.4811 (18) Å

  • b = 15.411 (2) Å

  • c = 8.6647 (12) Å

  • β = 94.388 (5)°

  • V = 1661.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.934

  • 16716 measured reflections

  • 3594 independent reflections

  • 2977 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.149

  • S = 0.99

  • 3594 reflections

  • 221 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯N1i 0.91 1.88 2.784 (3) 177
O6—H6O⋯O2i 0.91 2.55 3.336 (3) 145
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-base compounds have been used as fine chemicals and medical substrates. They are associated with antibacterial, antifungal and antitubercular activities and have diverse biological activities. Literature revealed that 2-azetidinone derivatives occupy an important place in medicinal chemistry as they show a variety of microbiological activity (Wadher et al.2009).

The molecules (I) are diastereomers and possess three asymmetric centers at C4, C5 and C6 carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration of the centres of rac-4R*,5S*,6R*. The cyclohexane ring adopts a half-chair conformation (Fig. 1). Izoxazole ring has an envelope conformation. The fragment of a ring C7a—N1—O2—C3 is almost planar - torsion angle is 1.0 (2) °. The phenyl ring is in a pseudo-equatorial position. Torsion angle between the ethoxycarbonyl group and the phenyl substituent is C8—C4—C5—C14 is -61.3 (2)° which indicates a pseudo-axial location of hydrogen atoms at C4 and C5. K+ creates coordination with the contacts: from the same ligand K1···O4–2.688 (2) and K1···O6–2.804 (2)Å; from one ligand K1···O3–2.606 (2)%A [-x,1-y, 1-z] and with an additional ligand K1···O3 2.701 (2) and K1···O2 3.028 (2)Å [x,y,-1+z]. O3 atoms form double bridges between the two K+ (Fig. 2) The closest contac K1—C12 is 3.372 (2) Å. The crystal structure involves O—H···N and O—H···O hydrogen bonds (Table 1 and Fig. 3).

Related literature top

For background to the microbiological activity of 2-azetidinone derivatives, see: Wadher et al. (2009).

Experimental top

(rac)-Diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol), hydroxylamine hydrochloride (20 mmol) were dissolved in 20 mL ethanol. The mixture was stirred at 345–350 K for 10 min. Then added 40 (mmol) potassium bicarbonate and continued with mixing up to 10 h. After cooling to a room temperature white crystals were obtained. The crystals were filtered and washed with ethanol. Then they were dissolved in ethanol (50 mL) and recrystallised to yield colourless block-shaped crystals for structure determination.

Refinement top

The hydrogen atoms of the NH and OH-groups (I) molecule were localised in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3-group and Uiso(H) = 1.2Ueq(N) for amino groups]. The other hydrogen atoms were placed in calculated positions with and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The polymeric structure of the title compound.
[Figure 3] Fig. 3. The hydrogen-bonded (dashed lines) packing in the title compound. H atoms not involved in hydrogen bonding have been omitted for clarity.
Poly[(µ3-rac-5-ethoxycarbonyl-6-hydroxy-6-methyl-4-phenyl-4,5,6,7- tetrahydrobenzo[c]isoxazol-3-olato)potassium] top
Crystal data top
[K(C17H18NO5)]F(000) = 744
Mr = 355.42Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2419 reflections
a = 12.4811 (18) Åθ = 2.7–32.7°
b = 15.411 (2) ŵ = 0.35 mm1
c = 8.6647 (12) ÅT = 100 K
β = 94.388 (5)°Prism, colorless
V = 1661.7 (4) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3594 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1515
Tmin = 0.903, Tmax = 0.934k = 1919
16716 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: difference Fourier map
wR(F2) = 0.149H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.080P)2 + 1.240P]
where P = (Fo2 + 2Fc2)/3
3594 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.68 e Å3
6 restraintsΔρmin = 0.64 e Å3
Crystal data top
[K(C17H18NO5)]V = 1661.7 (4) Å3
Mr = 355.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4811 (18) ŵ = 0.35 mm1
b = 15.411 (2) ÅT = 100 K
c = 8.6647 (12) Å0.30 × 0.30 × 0.20 mm
β = 94.388 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2977 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.934Rint = 0.042
16716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.99Δρmax = 0.68 e Å3
3594 reflectionsΔρmin = 0.64 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.05763 (5)0.40629 (3)0.14073 (6)0.04742 (19)
N10.28041 (17)0.31949 (12)0.8020 (2)0.0439 (5)
O20.19438 (14)0.35565 (10)0.88107 (18)0.0439 (4)
C30.15026 (18)0.42478 (13)0.7957 (2)0.0343 (4)
O30.07151 (14)0.46143 (11)0.84704 (18)0.0440 (4)
C3A0.20830 (16)0.43430 (12)0.6674 (2)0.0308 (4)
C40.19038 (16)0.49360 (12)0.5307 (2)0.0276 (4)
H40.13130.46790.46080.033*
C50.29248 (17)0.49356 (13)0.4414 (2)0.0323 (4)
H50.35150.52290.50630.039*
O40.19551 (16)0.53784 (12)0.2040 (2)0.0537 (5)
O50.35688 (16)0.59290 (14)0.2631 (3)0.0684 (6)
C60.32838 (17)0.39892 (13)0.4075 (3)0.0344 (4)
O60.23646 (12)0.35629 (9)0.33610 (18)0.0389 (4)
H6O0.25120.29920.32190.058*
C70.36413 (18)0.35424 (14)0.5608 (3)0.0399 (5)
H7A0.37240.29120.54300.048*
H7B0.43480.37750.60070.048*
C7A0.28494 (17)0.36821 (13)0.6776 (2)0.0343 (4)
C80.15431 (16)0.58394 (12)0.5748 (2)0.0296 (4)
C90.2076 (2)0.63132 (15)0.6927 (3)0.0455 (6)
H90.27120.60870.74520.055*
C100.1689 (3)0.71179 (16)0.7348 (3)0.0551 (7)
H100.20670.74400.81520.066*
C110.0769 (2)0.74512 (15)0.6616 (3)0.0499 (6)
H110.05100.80030.69070.060*
C120.0223 (2)0.69854 (14)0.5464 (3)0.0432 (5)
H120.04250.72070.49680.052*
C130.06184 (17)0.61842 (13)0.5017 (2)0.0334 (4)
H130.02450.58720.41980.040*
C140.2736 (2)0.54270 (14)0.2906 (3)0.0399 (5)
C150.3426 (6)0.6209 (6)0.1016 (5)0.0951 (18)0.547 (7)
H15A0.27250.65060.08200.114*0.547 (7)
H15B0.34370.57000.03200.114*0.547 (7)
C160.4336 (5)0.6826 (5)0.0708 (8)0.0951 (18)0.547 (7)
H16A0.43680.68990.04110.143*0.547 (7)
H16B0.50180.65860.11540.143*0.547 (7)
H16C0.42080.73900.11830.143*0.547 (7)
C15'0.3639 (8)0.6479 (5)0.1291 (8)0.0951 (18)0.45
H15C0.39280.70550.16130.114*0.453 (7)
H15D0.29160.65630.07580.114*0.453 (7)
C16'0.4377 (7)0.6047 (6)0.0203 (7)0.0951 (18)0.45
H16D0.43740.63810.07600.143*0.453 (7)
H16E0.41240.54560.00290.143*0.453 (7)
H16F0.51100.60250.06980.143*0.453 (7)
C170.4187 (2)0.39617 (19)0.2990 (3)0.0540 (6)
H17A0.44430.33640.29050.081*
H17B0.47800.43320.34020.081*
H17C0.39190.41720.19650.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0625 (4)0.0453 (3)0.0344 (3)0.0047 (2)0.0035 (2)0.0039 (2)
N10.0531 (12)0.0367 (9)0.0414 (11)0.0073 (8)0.0011 (9)0.0112 (8)
O20.0589 (10)0.0395 (8)0.0335 (8)0.0062 (7)0.0046 (7)0.0133 (6)
C30.0453 (12)0.0308 (9)0.0259 (9)0.0015 (8)0.0034 (8)0.0037 (7)
O30.0528 (10)0.0494 (9)0.0308 (8)0.0095 (7)0.0106 (7)0.0049 (7)
C3A0.0375 (10)0.0257 (9)0.0285 (9)0.0010 (7)0.0010 (8)0.0029 (7)
C40.0349 (10)0.0243 (8)0.0233 (8)0.0009 (7)0.0003 (7)0.0012 (7)
C50.0368 (10)0.0295 (9)0.0307 (10)0.0032 (8)0.0019 (8)0.0003 (7)
O40.0706 (12)0.0517 (10)0.0373 (9)0.0031 (9)0.0058 (8)0.0109 (7)
O50.0561 (12)0.0650 (12)0.0866 (16)0.0045 (9)0.0216 (11)0.0378 (11)
C60.0355 (11)0.0332 (10)0.0348 (11)0.0016 (8)0.0040 (8)0.0018 (8)
O60.0453 (9)0.0297 (7)0.0405 (8)0.0019 (6)0.0035 (7)0.0067 (6)
C70.0389 (12)0.0365 (11)0.0437 (12)0.0074 (9)0.0003 (9)0.0036 (9)
C7A0.0398 (11)0.0280 (9)0.0341 (10)0.0006 (8)0.0045 (8)0.0030 (8)
C80.0397 (11)0.0247 (9)0.0242 (9)0.0012 (7)0.0020 (8)0.0009 (7)
C90.0575 (14)0.0371 (11)0.0397 (12)0.0037 (10)0.0121 (10)0.0069 (9)
C100.0815 (19)0.0385 (12)0.0438 (13)0.0020 (12)0.0045 (13)0.0142 (10)
C110.0770 (18)0.0297 (10)0.0443 (13)0.0099 (11)0.0132 (12)0.0003 (9)
C120.0544 (14)0.0341 (11)0.0418 (12)0.0109 (9)0.0086 (10)0.0105 (9)
C130.0419 (11)0.0301 (9)0.0284 (10)0.0015 (8)0.0033 (8)0.0058 (8)
C140.0526 (13)0.0326 (10)0.0365 (11)0.0013 (9)0.0160 (10)0.0047 (8)
C150.074 (2)0.115 (4)0.100 (3)0.008 (2)0.026 (2)0.065 (3)
C160.074 (2)0.115 (4)0.100 (3)0.008 (2)0.026 (2)0.065 (3)
C15'0.074 (2)0.115 (4)0.100 (3)0.008 (2)0.026 (2)0.065 (3)
C16'0.074 (2)0.115 (4)0.100 (3)0.008 (2)0.026 (2)0.065 (3)
C170.0547 (15)0.0561 (15)0.0537 (16)0.0096 (12)0.0215 (12)0.0014 (12)
Geometric parameters (Å, º) top
K1—O3i2.6059 (17)O6—H6O0.9092
K1—O42.688 (2)C7—C7A1.483 (3)
K1—O3ii2.7010 (16)C7—H7A0.9900
K1—O62.8042 (16)C7—H7B0.9900
K1—O2ii3.0285 (18)C8—C131.380 (3)
K1—C3ii3.299 (2)C8—C91.384 (3)
K1—C12i3.372 (2)C9—C101.390 (3)
K1—C11i3.411 (3)C9—H90.9500
K1—K1iii3.9778 (11)C10—C111.369 (4)
N1—C7A1.318 (3)C10—H100.9500
N1—O21.430 (3)C11—C121.368 (4)
O2—C31.387 (2)C11—K1i3.411 (3)
O2—K1iv3.0285 (18)C11—H110.9500
C3—O31.245 (3)C12—C131.395 (3)
C3—C3A1.380 (3)C12—K1i3.372 (2)
C3—K1iv3.299 (2)C12—H120.9500
O3—K1i2.6059 (17)C13—H130.9500
O3—K1iv2.7011 (16)C15—C161.520 (3)
C3A—C7A1.395 (3)C15—H15A0.9900
C3A—C41.499 (3)C15—H15B0.9900
C4—C81.521 (3)C16—H16A0.9800
C4—C51.541 (3)C16—H16B0.9800
C4—H41.0000C16—H16C0.9800
C5—C141.513 (3)C15'—C16'1.522 (3)
C5—C61.560 (3)C15'—H15C0.9900
C5—H51.0000C15'—H15D0.9900
O4—C141.187 (3)C16'—H16D0.9800
O5—C141.332 (3)C16'—H16E0.9800
O5—C15'1.446 (3)C16'—H16F0.9800
O5—C151.462 (3)C17—H17A0.9800
C6—O61.422 (3)C17—H17B0.9800
C6—C171.523 (3)C17—H17C0.9800
C6—C71.532 (3)
O3i—K1—O477.88 (6)O6—C6—C7109.96 (17)
O3i—K1—O3ii82.92 (5)C17—C6—C7110.03 (19)
O4—K1—O3ii82.45 (6)O6—C6—C5106.27 (16)
O3i—K1—O6131.05 (5)C17—C6—C5112.27 (18)
O4—K1—O667.46 (5)C7—C6—C5109.00 (17)
O3ii—K1—O6123.35 (5)C6—O6—K1135.57 (12)
O3i—K1—O2ii128.12 (5)C6—O6—H6O110.0
O4—K1—O2ii87.56 (6)K1—O6—H6O110.1
O3ii—K1—O2ii45.63 (5)C7A—C7—C6111.18 (17)
O6—K1—O2ii84.83 (5)C7A—C7—H7A109.4
O3i—K1—C3ii103.30 (5)C6—C7—H7A109.4
O4—K1—C3ii81.74 (6)C7A—C7—H7B109.4
O3ii—K1—C3ii21.07 (5)C6—C7—H7B109.4
O6—K1—C3ii104.65 (5)H7A—C7—H7B108.0
O2ii—K1—C3ii24.85 (5)N1—C7A—C3A113.3 (2)
O3i—K1—C12i96.90 (5)N1—C7A—C7123.19 (19)
O4—K1—C12i114.94 (6)C3A—C7A—C7123.52 (19)
O3ii—K1—C12i162.27 (6)C13—C8—C9118.26 (19)
O6—K1—C12i69.74 (6)C13—C8—C4119.40 (17)
O2ii—K1—C12i133.79 (5)C9—C8—C4122.23 (18)
C3ii—K1—C12i156.31 (6)C8—C9—C10120.5 (2)
O3i—K1—C11i100.67 (6)C8—C9—H9119.7
O4—K1—C11i138.20 (6)C10—C9—H9119.7
O3ii—K1—C11i139.26 (6)C11—C10—C9120.6 (2)
O6—K1—C11i84.75 (6)C11—C10—H10119.7
O2ii—K1—C11i121.58 (5)C9—C10—H10119.7
C3ii—K1—C11i137.22 (6)C12—C11—C10119.6 (2)
C12i—K1—C11i23.26 (6)C12—C11—K1i76.75 (14)
O3i—K1—K1iii42.37 (3)C10—C11—K1i86.48 (16)
O4—K1—K1iii76.89 (4)C12—C11—H11120.2
O3ii—K1—K1iii40.55 (4)C10—C11—H11120.2
O6—K1—K1iii143.46 (4)K1i—C11—H11106.8
O2ii—K1—K1iii85.96 (3)C11—C12—C13120.0 (2)
C3ii—K1—K1iii61.12 (4)C11—C12—K1i79.98 (14)
C12i—K1—K1iii136.51 (5)C13—C12—K1i86.09 (12)
C11i—K1—K1iii129.48 (5)C11—C12—H12120.0
C7A—N1—O2104.50 (17)C13—C12—H12120.0
C3—O2—N1109.00 (16)K1i—C12—H12104.0
C3—O2—K1iv88.57 (12)C8—C13—C12121.0 (2)
N1—O2—K1iv160.52 (12)C8—C13—H13119.5
O3—C3—C3A135.81 (19)C12—C13—H13119.5
O3—C3—O2116.73 (19)O4—C14—O5122.5 (2)
C3A—C3—O2107.45 (18)O4—C14—C5125.5 (2)
O3—C3—K1iv51.27 (11)O5—C14—C5112.0 (2)
C3A—C3—K1iv168.76 (15)O5—C15—C16108.3 (3)
O2—C3—K1iv66.58 (11)O5—C15—H15A110.0
C3—O3—K1i151.29 (14)C16—C15—H15A110.0
C3—O3—K1iv107.66 (13)O5—C15—H15B110.0
K1i—O3—K1iv97.08 (5)C16—C15—H15B110.0
C3—C3A—C7A105.72 (18)H15A—C15—H15B108.4
C3—C3A—C4130.19 (18)O5—C15'—C16'108.5 (3)
C7A—C3A—C4123.71 (18)O5—C15'—H15C110.0
C3A—C4—C8112.89 (15)C16'—C15'—H15C110.0
C3A—C4—C5108.52 (16)O5—C15'—H15D110.0
C8—C4—C5113.49 (16)C16'—C15'—H15D110.0
C3A—C4—H4107.2H15C—C15'—H15D108.4
C8—C4—H4107.2C15'—C16'—H16D109.5
C5—C4—H4107.2C15'—C16'—H16E109.5
C14—C5—C4110.71 (17)H16D—C16'—H16E109.5
C14—C5—C6109.48 (17)C15'—C16'—H16F109.5
C4—C5—C6110.82 (16)H16D—C16'—H16F109.5
C14—C5—H5108.6H16E—C16'—H16F109.5
C4—C5—H5108.6C6—C17—H17A109.5
C6—C5—H5108.6C6—C17—H17B109.5
C14—O4—K1131.21 (15)H17A—C17—H17B109.5
C14—O5—C15'125.5 (5)C6—C17—H17C109.5
C14—O5—C15107.7 (3)H17A—C17—H17C109.5
C15'—O5—C1521.4 (5)H17B—C17—H17C109.5
O6—C6—C17109.24 (19)
C7A—N1—O2—C31.0 (2)O2ii—K1—O6—C692.04 (18)
C7A—N1—O2—K1iv152.5 (3)C3ii—K1—O6—C676.92 (18)
N1—O2—C3—O3177.58 (19)C12i—K1—O6—C6127.24 (18)
K1iv—O2—C3—O310.98 (19)C11i—K1—O6—C6145.53 (18)
N1—O2—C3—C3A1.6 (2)K1iii—K1—O6—C616.0 (2)
K1iv—O2—C3—C3A169.83 (15)O6—C6—C7—C7A68.8 (2)
N1—O2—C3—K1iv171.44 (16)C17—C6—C7—C7A170.8 (2)
C3A—C3—O3—K1i19.9 (5)C5—C6—C7—C7A47.3 (2)
O2—C3—O3—K1i161.3 (2)O2—N1—C7A—C3A0.0 (3)
K1iv—C3—O3—K1i148.3 (4)O2—N1—C7A—C7179.66 (19)
C3A—C3—O3—K1iv168.2 (2)C3—C3A—C7A—N10.9 (3)
O2—C3—O3—K1iv12.9 (2)C4—C3A—C7A—N1174.48 (19)
O3—C3—C3A—C7A177.4 (3)C3—C3A—C7A—C7179.4 (2)
O2—C3—C3A—C7A1.5 (2)C4—C3A—C7A—C75.8 (3)
K1iv—C3—C3A—C7A57.8 (8)C6—C7—C7A—N1161.3 (2)
O3—C3—C3A—C44.5 (4)C6—C7—C7A—C3A19.0 (3)
O2—C3—C3A—C4174.50 (19)C3A—C4—C8—C13126.32 (19)
K1iv—C3—C3A—C4129.3 (7)C5—C4—C8—C13109.7 (2)
C3—C3A—C4—C840.0 (3)C3A—C4—C8—C949.8 (3)
C7A—C3A—C4—C8148.17 (19)C5—C4—C8—C974.2 (3)
C3—C3A—C4—C5166.7 (2)C13—C8—C9—C100.5 (4)
C7A—C3A—C4—C521.5 (3)C4—C8—C9—C10176.6 (2)
C3A—C4—C5—C14172.36 (16)C8—C9—C10—C110.7 (4)
C8—C4—C5—C1461.3 (2)C9—C10—C11—C120.3 (4)
C3A—C4—C5—C650.7 (2)C9—C10—C11—K1i72.9 (3)
C8—C4—C5—C6177.04 (16)C10—C11—C12—C131.4 (4)
O3i—K1—O4—C14137.7 (2)K1i—C11—C12—C1379.5 (2)
O3ii—K1—O4—C14138.0 (2)C10—C11—C12—K1i78.1 (2)
O6—K1—O4—C147.0 (2)C9—C8—C13—C120.7 (3)
O2ii—K1—O4—C1492.4 (2)C4—C8—C13—C12175.58 (18)
C3ii—K1—O4—C14116.7 (2)C11—C12—C13—C81.7 (3)
C12i—K1—O4—C1445.6 (2)K1i—C12—C13—C874.42 (19)
C11i—K1—O4—C1445.2 (3)K1—O4—C14—O5148.93 (19)
K1iii—K1—O4—C14178.8 (2)K1—O4—C14—C530.2 (3)
C14—C5—C6—O670.3 (2)C15'—O5—C14—O40.8 (5)
C4—C5—C6—O652.1 (2)C15—O5—C14—O412.5 (5)
C14—C5—C6—C1749.0 (3)C15'—O5—C14—C5180.0 (4)
C4—C5—C6—C17171.44 (19)C15—O5—C14—C5166.8 (5)
C14—C5—C6—C7171.22 (18)C4—C5—C14—O442.8 (3)
C4—C5—C6—C766.4 (2)C6—C5—C14—O479.6 (3)
C17—C6—O6—K189.3 (2)C4—C5—C14—O5137.97 (19)
C7—C6—O6—K1149.81 (14)C6—C5—C14—O599.6 (2)
C5—C6—O6—K132.0 (2)C14—O5—C15—C16176.7 (6)
O3i—K1—O6—C645.9 (2)C15'—O5—C15—C1627.6 (11)
O4—K1—O6—C62.54 (17)C14—O5—C15'—C16'104.3 (7)
O3ii—K1—O6—C666.21 (19)C15—O5—C15'—C16'67.4 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···N1v0.911.882.784 (3)177
O6—H6O···O2v0.912.553.336 (3)145
Symmetry code: (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[K(C17H18NO5)]
Mr355.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.4811 (18), 15.411 (2), 8.6647 (12)
β (°) 94.388 (5)
V3)1661.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.903, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
16716, 3594, 2977
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.149, 0.99
No. of reflections3594
No. of parameters221
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.64

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···N1i0.911.882.784 (3)177
O6—H6O···O2i0.912.553.336 (3)145
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help with this work.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. PharmTech Res. 1, 22–33.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds