organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[2-(prop-1-en­yl)phen­­oxy]butane

aBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: mehdiyeva_gm@mail.ru

(Received 3 May 2011; accepted 16 May 2011; online 20 May 2011)

The mol­ecule of the title compound, C22H26O2, exhibits Ci mol­ecular symmetry with a crystallographic inversion centre at the mid-point of the central C—C bond. A kink in the mol­ecule is defined by the torsion angle of 66.7 (2)° about this central bond of the alkyl bridge.

Related literature

For general background to the use of copolymerization reactions, see: Crivello et al. (1994[Crivello, J. V., Carter, A. M. & Bratslavsky, S. A. (1994). J. Polymer Sci. Part A Polymer Chem. 32, 2895-2909.]); Roshupkin & Kurmaz (2004[Roshupkin, V. P. & Kurmaz, S. V. (2004). Successes Chem. 73, 247-274.]); Askadsky (1998[Askadsky, A. A. (1998). Successes Chem. 67, 755-787.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26O2

  • Mr = 322.43

  • Orthorhombic, P b c a

  • a = 5.4501 (10) Å

  • b = 15.825 (3) Å

  • c = 21.889 (4) Å

  • V = 1887.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.986

  • 20262 measured reflections

  • 2404 independent reflections

  • 1427 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.151

  • S = 1.01

  • 2404 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For giving the important operationalisation to cross-linked polymers reactions of copolymerisation of various monomers, multifunctional comonomers [1] are used. By applying this method, the hi-tech processes for the preparation of polymeric sorbents, photorezisting materials for microelectronics, the composites for the laser technics of a special purposes, fixation of metalcomplex of catalysts, etc were obtained (Crivello et al. 1994). In practice, for obtaining polymers of demanded functional properties, polymerical transformations are carried out. However, it is necessary to notice, that obtaining such cross-linked copolymers have some difficulties connected with high reactivity of cross-linking comonomers (for example, divinylbenzene), which is reflected in heterogeneity of their structure and other important physical and chemical properties. Therefore, to prepare multifunctional monomers, on the basis of alkenylphenols with two double bonds, is rather important. The molecule of the title compound, C22H26O2 (I), is generated by a crystallographic inversion centre at the midpoint of the central C—C bond. A fold of the molecule is due to the twist in the central butylene bridge [O1—C10—C11—C11A torsion angle of 66.7 (2)°] (Fig. 1). Crystal packing is dominated by van der Waals interactions (Fig. 2).

Related literature top

For general background to the use of copolymerization reactions, see: Crivello et al. (1994). For related literature [on what subject(s)?], see: Roshupkin & Kurmaz (2004); Askadsky (1998).

Experimental top

2-Propenylphenol (0.015 mol, 2 g) and KOH (0.015 mol, 0.84 g) were dissolved in 5 mL 2-propanol, then to this solution 1,4-dibromebutane (0.0043 mol, 0.93 g) was added. This mixture was stirred at 353 K within 30 min. The desired compounds (with yield of 4.7 g, 98.1%) was filtered and washed with acetone and recrystallised to obtain colourless crystals. Tmp = 353 K. The structure of the reported compound - 1,4-bis{2(1-propenyl)phenoxy}butane, also was proved by NMR-spectroscopy. FT-NMR (acetone-d6,, p.p.m.), 1H: 1.91 d (6H,CH3); 2.03 t (4H,CH2); 4.1 t (4H, OCH2); 6.15 m (2H, CH=); 6.65–7.1 m (8H, 2Ar); 7.32 d (2H,CH=). 13 C: 18.9; 26.3; 67.6; 112.8; 121.7; 124.9; 126.1; 127.2; 127.3; 127.5; 156.4.

Refinement top

The hydrogen atoms were placed in calculated positions and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Stacking of chains in the crystal packing.
1,4-Bis[2-(prop-1-enyl)phenoxy]butane top
Crystal data top
C22H26O2F(000) = 696
Mr = 322.43Dx = 1.134 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4034 reflections
a = 5.4501 (10) Åθ = 2.6–23.1°
b = 15.825 (3) ŵ = 0.07 mm1
c = 21.889 (4) ÅT = 296 K
V = 1887.9 (6) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2404 independent reflections
Radiation source: fine-focus sealed tube1427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.979, Tmax = 0.986k = 2121
20262 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.071P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
2404 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C22H26O2V = 1887.9 (6) Å3
Mr = 322.43Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 5.4501 (10) ŵ = 0.07 mm1
b = 15.825 (3) ÅT = 296 K
c = 21.889 (4) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1427 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.986Rint = 0.040
20262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2404 reflectionsΔρmin = 0.11 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1929 (2)0.12834 (6)0.05285 (5)0.0764 (3)
C10.1981 (3)0.19881 (9)0.08887 (6)0.0641 (4)
C20.3717 (2)0.19780 (9)0.13598 (6)0.0614 (4)
C30.3831 (3)0.26839 (11)0.17357 (8)0.0805 (5)
H3A0.49690.26960.20520.097*
C40.2297 (4)0.33659 (12)0.16510 (10)0.0964 (6)
H4A0.24080.38320.19090.116*
C50.0609 (4)0.33587 (12)0.11879 (11)0.0958 (6)
H5A0.04360.38170.11340.115*
C60.0455 (3)0.26750 (11)0.08014 (8)0.0826 (5)
H6A0.06730.26750.04830.099*
C70.5292 (3)0.12253 (10)0.14476 (7)0.0655 (4)
H7A0.48630.07470.12250.079*
C80.7203 (3)0.11548 (10)0.17993 (7)0.0729 (4)
H8A0.76710.16320.20180.088*
C90.8691 (3)0.03876 (12)0.18816 (7)0.0789 (5)
H9A0.87090.02340.23060.118*
H9B1.03380.04940.17460.118*
H9C0.79980.00650.16460.118*
C100.0059 (3)0.12144 (11)0.00726 (8)0.0791 (5)
H10A0.02610.16530.02330.095*
H10B0.15490.12770.02570.095*
C110.0297 (4)0.03563 (11)0.02174 (7)0.0827 (5)
H11A0.19620.02860.03660.099*
H11B0.07970.03250.05660.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0798 (7)0.0745 (7)0.0750 (7)0.0052 (5)0.0182 (5)0.0066 (5)
C10.0641 (8)0.0616 (8)0.0665 (8)0.0057 (6)0.0061 (7)0.0056 (6)
C20.0609 (8)0.0622 (8)0.0611 (8)0.0133 (6)0.0091 (6)0.0018 (6)
C30.0864 (11)0.0742 (10)0.0807 (10)0.0152 (8)0.0078 (9)0.0079 (8)
C40.1190 (15)0.0636 (10)0.1066 (14)0.0128 (10)0.0252 (13)0.0162 (10)
C50.1026 (13)0.0663 (11)0.1185 (16)0.0098 (9)0.0153 (13)0.0074 (10)
C60.0802 (10)0.0741 (11)0.0936 (12)0.0050 (8)0.0000 (9)0.0135 (9)
C70.0640 (8)0.0719 (9)0.0605 (8)0.0116 (7)0.0001 (6)0.0039 (7)
C80.0725 (9)0.0806 (10)0.0657 (9)0.0124 (8)0.0047 (7)0.0068 (7)
C90.0681 (9)0.0978 (12)0.0708 (9)0.0015 (8)0.0044 (7)0.0010 (8)
C100.0803 (10)0.0902 (11)0.0666 (9)0.0064 (8)0.0164 (8)0.0109 (8)
C110.0945 (12)0.0979 (12)0.0558 (8)0.0157 (10)0.0108 (8)0.0026 (7)
Geometric parameters (Å, º) top
O1—C11.3659 (17)C7—C81.300 (2)
O1—C101.4305 (19)C7—H7A0.9300
C1—C61.382 (2)C8—C91.471 (2)
C1—C21.399 (2)C8—H8A0.9300
C2—C31.389 (2)C9—H9A0.9600
C2—C71.481 (2)C9—H9B0.9600
C3—C41.378 (3)C9—H9C0.9600
C3—H3A0.9300C10—C111.505 (2)
C4—C51.369 (3)C10—H10A0.9700
C4—H4A0.9300C10—H10B0.9700
C5—C61.376 (3)C11—C11i1.511 (3)
C5—H5A0.9300C11—H11A0.9700
C6—H6A0.9300C11—H11B0.9700
C1—O1—C10118.67 (12)C7—C8—C9125.81 (15)
O1—C1—C6123.36 (14)C7—C8—H8A117.1
O1—C1—C2115.47 (12)C9—C8—H8A117.1
C6—C1—C2121.17 (15)C8—C9—H9A109.5
C3—C2—C1117.23 (14)C8—C9—H9B109.5
C3—C2—C7122.96 (14)H9A—C9—H9B109.5
C1—C2—C7119.78 (12)C8—C9—H9C109.5
C4—C3—C2121.55 (18)H9A—C9—H9C109.5
C4—C3—H3A119.2H9B—C9—H9C109.5
C2—C3—H3A119.2O1—C10—C11107.57 (13)
C5—C4—C3120.05 (17)O1—C10—H10A110.2
C5—C4—H4A120.0C11—C10—H10A110.2
C3—C4—H4A120.0O1—C10—H10B110.2
C4—C5—C6120.20 (18)C11—C10—H10B110.2
C4—C5—H5A119.9H10A—C10—H10B108.5
C6—C5—H5A119.9C10—C11—C11i112.91 (17)
C5—C6—C1119.78 (18)C10—C11—H11A109.0
C5—C6—H6A120.1C11i—C11—H11A109.0
C1—C6—H6A120.1C10—C11—H11B109.0
C8—C7—C2127.62 (14)C11i—C11—H11B109.0
C8—C7—H7A116.2H11A—C11—H11B107.8
C2—C7—H7A116.2
C10—O1—C1—C65.9 (2)C3—C4—C5—C60.7 (3)
C10—O1—C1—C2174.45 (13)C4—C5—C6—C11.1 (3)
O1—C1—C2—C3179.89 (13)O1—C1—C6—C5179.48 (15)
C6—C1—C2—C30.3 (2)C2—C1—C6—C50.9 (2)
O1—C1—C2—C71.52 (18)C3—C2—C7—C812.1 (2)
C6—C1—C2—C7178.86 (14)C1—C2—C7—C8169.40 (15)
C1—C2—C3—C40.2 (2)C2—C7—C8—C9178.78 (15)
C7—C2—C3—C4178.36 (15)C1—O1—C10—C11175.35 (13)
C2—C3—C4—C50.0 (3)O1—C10—C11—C11i66.7 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H26O2
Mr322.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)5.4501 (10), 15.825 (3), 21.889 (4)
V3)1887.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.979, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
20262, 2404, 1427
Rint0.040
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.151, 1.01
No. of reflections2404
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

References

First citationAskadsky, A. A. (1998). Successes Chem. 67, 755–787.  Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrivello, J. V., Carter, A. M. & Bratslavsky, S. A. (1994). J. Polymer Sci. Part A Polymer Chem. 32, 2895–2909.  CrossRef CAS Google Scholar
First citationRoshupkin, V. P. & Kurmaz, S. V. (2004). Successes Chem. 73, 247–274.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds