organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Ethylsulfanyl-1,3,4-thia­diazol-2-yl)-2-(4,5,6,7-tetra­hydrothieno[3,2-c]pyri­din-5-yl)acetamide

aSchool of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China, and cTianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 4 May 2011; accepted 6 May 2011; online 25 May 2011)

In the title compound, C13H16N4OS3, a thienopyridine­derivative, the tetra­hydro­pyridine ring exhibits a half-chair conformation, and the folded conformation of the mol­ecule is defined by the N—C—C—N torsion angle of −78.85 (16)°. The crystal packing features inter­molecular C—H⋯N, N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

The title compound is a potential anti­platelet agent. As irreversible P2Y12 antagonists, thienopyridines have proved the relevance of inhibiting signaling via the platelet-specific P2Y12 ADP receptor in the prevention of cardiovascular events, see: Iyengar (2009[Iyengar, S. (2009). J. Thromb. Thrombolysis, 27, 300-306.]); Franchini & Mannucci, (2009[Franchini, M. & Mannucci, P. M. (2009). Eur. J. Int. Med. 20, 733-738.]); Van Giezen et al. (2009[Van Giezen, J. J. J., Berntsson, P., Zachrisson, H. & Bjorkman, J. A. (2009). Thromb. Res. 124, 565-571.]); Van Giezen & Humphries (2005[Van Giezen, J. J. J. & Humphries, R. G. (2005). Sem. Thromb. Hemost. 31, 195-204.]). For a related structure, see: Chen et al. (2010[Chen, J.-F., Liu, Y., Wang, J.-Y. & Liu, D.-K. (2010). Acta Cryst. E66, o3213.]). For the synthesis of the title compound, see: Liu et al. (2008[Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N4OS3

  • Mr = 340.48

  • Monoclinic, P 21 /n

  • a = 6.532 (4) Å

  • b = 9.788 (6) Å

  • c = 23.491 (15) Å

  • β = 95.524 (6)°

  • V = 1494.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 113 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.873, Tmax = 0.916

  • 12423 measured reflections

  • 3545 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.03

  • 3545 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯N1i 0.99 2.60 3.473 (3) 147
N2—H2⋯N3ii 0.89 (1) 2.02 (1) 2.902 (2) 171 (2)
C5—H5⋯O1iii 0.95 2.46 3.279 (2) 145
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

As irreversible P2Y12 antagonists, the thienopyridines (e.g., clopidogrel and prasugrel) have been further proved the relevance of inhibiting signaling via the platelet-specific P2Y12 ADP receptor in the prevention of cardiovascular events (Iyengar, 2009; Van Giezen & Humphries, 2005; Franchini, et al., 2009). The structure of the title compound (I), a new derivative of thienopyridine, is presented here.

The tetrahydropyridine ring is in a half-chair conformation (Fig. 1). The thiadiazole ring plane (r.m.s. deviation 0.0020Å) and the acidamide plane (r.m.s. deviation 0.0074 Å) are almost coplanar, with a dihedral angle of 3.24 (9)°. The dihedral angles formed between the thiadiazole ring plane and the thiophene ring plane, the acidamide plane and the thiophene ring plane are 76.19 (6)° and 78.47 (7)° , respectively. Crystal packing is via hydrogen bonds C—H···N, N—H···N and C—H···O (Table 1, Fig. 2).

Related literature top

The title compound is a potential antiplatelet agent. As irreversible P2Y12 antagonists, thienopyridines have proved the relevance of inhibiting signaling via the platelet-specific P2Y12 ADP receptor in the prevention of cardiovascular events, see: Iyengar (2009); Franchini & Mannucci, (2009); Van Giezen et al. (2009); Van Giezen & Humphries (2005). For a related structure, see: Chen et al. (2010). For the synthesis of the title compound, see: Liu et al. (2008).

Experimental top

Chloracetyl chloride was dropwised added into a mixture of 5-(ethylthio)-1,3,4-thiadiazol-2-amine, TEA and DMF at 268 K. After stirred for 3 h, the mixture was poured into cold water. 2-Chloro-N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)acetamide was precipitated as an intermediate. Then the intermediate, equimolar quantities thienopyridine salt and TEA were refluxed for 5 h in acetonitrile, and the product was obtained by silica gel column chromatography. Crystallisation of the obtained yellow solid from methanol afforded light-yellow crystals suitable for X-ray analysis.

Refinement top

The N–H bond was restrained to 0.90 Å, and other H atoms were positioned geometrioncally and refined using a riding model, with d(C—H)=0.95–0.99 Å, and Uiso(H)=1.2Ueq(C) of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I) with hydrogen bonds drawn as dashed lines.
N-(5-Ethylsulfanyl-1,3,4-thiadiazol-2-yl)-2-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)acetamide top
Crystal data top
C13H16N4OS3F(000) = 712
Mr = 340.48Dx = 1.513 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4582 reflections
a = 6.532 (4) Åθ = 1.7–27.9°
b = 9.788 (6) ŵ = 0.50 mm1
c = 23.491 (15) ÅT = 113 K
β = 95.524 (6)°Prism, colourless
V = 1494.8 (16) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3545 independent reflections
Radiation source: rotating anode2653 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.036
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.873, Tmax = 0.916l = 2830
12423 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max = 0.004
195 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C13H16N4OS3V = 1494.8 (16) Å3
Mr = 340.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.532 (4) ŵ = 0.50 mm1
b = 9.788 (6) ÅT = 113 K
c = 23.491 (15) Å0.28 × 0.22 × 0.18 mm
β = 95.524 (6)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3545 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2653 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.916Rint = 0.036
12423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
3545 reflectionsΔρmin = 0.23 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09432 (6)0.17109 (4)0.167990 (17)0.02366 (11)
S20.59937 (6)0.64557 (4)0.091056 (16)0.01921 (10)
S30.24260 (6)0.77190 (4)0.021966 (17)0.02324 (11)
O10.87853 (17)0.54420 (11)0.17006 (4)0.0257 (3)
N11.16286 (18)0.27779 (12)0.15327 (5)0.0188 (3)
N20.9587 (2)0.51028 (13)0.08012 (5)0.0195 (3)
N30.76496 (19)0.59529 (13)0.00107 (5)0.0199 (3)
N40.58266 (19)0.66332 (13)0.01858 (5)0.0196 (3)
C11.3598 (2)0.20466 (16)0.15877 (7)0.0220 (3)
H1A1.41810.20460.19930.026*
H1B1.45840.25130.13590.026*
C21.3270 (2)0.05905 (16)0.13799 (7)0.0233 (3)
H2A1.29550.05770.09590.028*
H2B1.45310.00450.14790.028*
C31.1520 (2)0.00006 (15)0.16615 (6)0.0194 (3)
C40.8868 (2)0.14081 (15)0.20530 (7)0.0234 (3)
H40.79890.21030.21730.028*
C50.8627 (2)0.00627 (15)0.21566 (6)0.0214 (3)
H50.75620.02990.23600.026*
C61.0153 (2)0.07498 (15)0.19257 (6)0.0184 (3)
C71.0281 (2)0.22806 (15)0.19494 (6)0.0197 (3)
H7A0.88890.26760.18650.024*
H7B1.08240.25730.23380.024*
C81.1928 (2)0.42478 (15)0.15876 (7)0.0220 (3)
H8A1.30520.45380.13610.026*
H8B1.23240.44840.19930.026*
C90.9969 (2)0.49862 (14)0.13783 (7)0.0204 (3)
C100.7907 (2)0.57771 (14)0.05403 (6)0.0181 (3)
C110.4826 (2)0.69389 (15)0.02453 (6)0.0190 (3)
C120.2098 (3)0.84165 (17)0.04979 (7)0.0300 (4)
H12A0.30700.79580.07340.036*
H12B0.06860.82160.06690.036*
C130.2449 (3)0.99201 (18)0.05141 (8)0.0362 (4)
H13A0.15241.03790.02710.054*
H13B0.21731.02490.09080.054*
H13C0.38791.01210.03740.054*
H21.047 (2)0.4714 (17)0.0587 (7)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (2)0.0204 (2)0.0220 (2)0.00424 (17)0.00251 (17)0.00018 (16)
S20.0206 (2)0.02023 (18)0.0177 (2)0.00016 (15)0.00653 (16)0.00083 (15)
S30.0217 (2)0.0242 (2)0.0244 (2)0.00316 (16)0.00550 (17)0.00097 (16)
O10.0338 (7)0.0255 (6)0.0190 (6)0.0047 (5)0.0095 (5)0.0034 (5)
N10.0177 (7)0.0200 (6)0.0189 (7)0.0010 (5)0.0038 (5)0.0011 (5)
N20.0192 (7)0.0222 (6)0.0178 (7)0.0017 (5)0.0052 (5)0.0018 (5)
N30.0185 (7)0.0228 (6)0.0186 (7)0.0007 (5)0.0030 (5)0.0029 (5)
N40.0179 (7)0.0210 (6)0.0200 (7)0.0015 (5)0.0026 (5)0.0019 (5)
C10.0165 (8)0.0283 (8)0.0213 (8)0.0002 (6)0.0017 (6)0.0002 (6)
C20.0190 (8)0.0286 (8)0.0224 (8)0.0039 (7)0.0031 (7)0.0024 (7)
C30.0197 (8)0.0213 (7)0.0164 (8)0.0025 (6)0.0016 (6)0.0005 (6)
C40.0278 (9)0.0243 (8)0.0181 (8)0.0009 (7)0.0020 (7)0.0045 (6)
C50.0235 (8)0.0252 (8)0.0157 (8)0.0019 (6)0.0031 (6)0.0020 (6)
C60.0198 (8)0.0210 (7)0.0141 (7)0.0014 (6)0.0003 (6)0.0012 (6)
C70.0198 (8)0.0223 (7)0.0174 (8)0.0003 (6)0.0042 (6)0.0009 (6)
C80.0216 (8)0.0220 (8)0.0223 (8)0.0037 (6)0.0020 (7)0.0002 (6)
C90.0248 (8)0.0154 (7)0.0216 (8)0.0056 (6)0.0049 (7)0.0010 (6)
C100.0191 (8)0.0166 (7)0.0195 (8)0.0025 (6)0.0067 (6)0.0013 (6)
C110.0193 (8)0.0176 (7)0.0200 (8)0.0034 (6)0.0024 (6)0.0011 (6)
C120.0335 (10)0.0342 (9)0.0216 (9)0.0088 (8)0.0004 (7)0.0013 (7)
C130.0387 (11)0.0375 (10)0.0303 (10)0.0098 (8)0.0067 (8)0.0095 (8)
Geometric parameters (Å, º) top
S1—C41.7096 (18)C2—H2A0.9900
S1—C31.7186 (18)C2—H2B0.9900
S2—C101.7232 (16)C3—C61.352 (2)
S2—C111.7372 (18)C4—C51.351 (2)
S3—C111.7396 (18)C4—H40.9500
S3—C121.812 (2)C5—C61.423 (2)
O1—C91.2179 (18)C5—H50.9500
N1—C81.456 (2)C6—C71.501 (2)
N1—C71.4614 (18)C7—H7A0.9900
N1—C11.467 (2)C7—H7B0.9900
N2—C91.359 (2)C8—C91.510 (2)
N2—C101.373 (2)C8—H8A0.9900
N2—H20.885 (9)C8—H8B0.9900
N3—C101.300 (2)C12—C131.490 (3)
N3—N41.3914 (18)C12—H12A0.9900
N4—C111.2921 (19)C12—H12B0.9900
C1—C21.515 (2)C13—H13A0.9800
C1—H1A0.9900C13—H13B0.9800
C1—H1B0.9900C13—H13C0.9800
C2—C31.491 (2)
C4—S1—C391.75 (7)C5—C6—C7125.60 (13)
C10—S2—C1185.86 (8)N1—C7—C6110.02 (11)
C11—S3—C12102.89 (8)N1—C7—H7A109.7
C8—N1—C7110.75 (11)C6—C7—H7A109.7
C8—N1—C1111.43 (12)N1—C7—H7B109.7
C7—N1—C1110.99 (12)C6—C7—H7B109.7
C9—N2—C10123.21 (13)H7A—C7—H7B108.2
C9—N2—H2117.7 (13)N1—C8—C9110.00 (13)
C10—N2—H2119.1 (13)N1—C8—H8A109.7
C10—N3—N4112.50 (12)C9—C8—H8A109.7
C11—N4—N3111.23 (13)N1—C8—H8B109.7
N1—C1—C2109.60 (13)C9—C8—H8B109.7
N1—C1—H1A109.8H8A—C8—H8B108.2
C2—C1—H1A109.8O1—C9—N2121.50 (15)
N1—C1—H1B109.8O1—C9—C8122.81 (15)
C2—C1—H1B109.8N2—C9—C8115.69 (13)
H1A—C1—H1B108.2N3—C10—N2121.95 (13)
C3—C2—C1108.17 (12)N3—C10—S2114.88 (12)
C3—C2—H2A110.1N2—C10—S2123.17 (12)
C1—C2—H2A110.1N4—C11—S2115.51 (12)
C3—C2—H2B110.1N4—C11—S3126.62 (13)
C1—C2—H2B110.1S2—C11—S3117.83 (9)
H2A—C2—H2B108.4C13—C12—S3113.02 (12)
C6—C3—C2124.21 (14)C13—C12—H12A109.0
C6—C3—S1111.17 (12)S3—C12—H12A109.0
C2—C3—S1124.61 (11)C13—C12—H12B109.0
C5—C4—S1111.89 (12)S3—C12—H12B109.0
C5—C4—H4124.1H12A—C12—H12B107.8
S1—C4—H4124.1C12—C13—H13A109.5
C4—C5—C6112.24 (14)C12—C13—H13B109.5
C4—C5—H5123.9H13A—C13—H13B109.5
C6—C5—H5123.9C12—C13—H13C109.5
C3—C6—C5112.94 (14)H13A—C13—H13C109.5
C3—C6—C7121.45 (13)H13B—C13—H13C109.5
C10—N3—N4—C110.50 (17)C7—N1—C8—C970.74 (16)
C8—N1—C1—C2165.54 (12)C1—N1—C8—C9165.18 (12)
C7—N1—C1—C270.53 (16)C10—N2—C9—O12.6 (2)
N1—C1—C2—C349.63 (17)C10—N2—C9—C8178.09 (13)
C1—C2—C3—C616.2 (2)N1—C8—C9—O1100.49 (17)
C1—C2—C3—S1165.28 (12)N1—C8—C9—N278.85 (16)
C4—S1—C3—C60.65 (13)N4—N3—C10—N2178.63 (12)
C4—S1—C3—C2179.37 (14)N4—N3—C10—S21.53 (16)
C3—S1—C4—C50.16 (13)C9—N2—C10—N3175.29 (14)
S1—C4—C5—C60.36 (18)C9—N2—C10—S24.5 (2)
C2—C3—C6—C5179.69 (14)C11—S2—C10—N31.57 (12)
S1—C3—C6—C50.97 (17)C11—S2—C10—N2178.59 (13)
C2—C3—C6—C70.9 (2)N3—N4—C11—S20.73 (16)
S1—C3—C6—C7177.84 (12)N3—N4—C11—S3176.86 (10)
C4—C5—C6—C30.9 (2)C10—S2—C11—N41.29 (12)
C4—C5—C6—C7177.88 (15)C10—S2—C11—S3176.53 (10)
C8—N1—C7—C6174.53 (12)C12—S3—C11—N416.16 (16)
C1—N1—C7—C650.20 (16)C12—S3—C11—S2166.30 (9)
C3—C6—C7—N115.4 (2)C11—S3—C12—C13103.33 (14)
C5—C6—C7—N1163.23 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N1i0.992.603.473 (3)147
N2—H2···N3ii0.89 (1)2.02 (1)2.902 (2)171 (2)
C5—H5···O1iii0.952.463.279 (2)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N4OS3
Mr340.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)6.532 (4), 9.788 (6), 23.491 (15)
β (°) 95.524 (6)
V3)1494.8 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.873, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
12423, 3545, 2653
Rint0.036
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.03
No. of reflections3545
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N1i0.992.603.473 (3)147
N2—H2···N3ii0.885 (9)2.023 (10)2.902 (2)171.4 (18)
C5—H5···O1iii0.952.463.279 (2)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determination and for helpful suggestions.

References

First citationChen, J.-F., Liu, Y., Wang, J.-Y. & Liu, D.-K. (2010). Acta Cryst. E66, o3213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFranchini, M. & Mannucci, P. M. (2009). Eur. J. Int. Med. 20, 733–738.  CrossRef CAS Google Scholar
First citationIyengar, S. (2009). J. Thromb. Thrombolysis, 27, 300–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Giezen, J. J. J., Berntsson, P., Zachrisson, H. & Bjorkman, J. A. (2009). Thromb. Res. 124, 565–571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVan Giezen, J. J. J. & Humphries, R. G. (2005). Sem. Thromb. Hemost. 31, 195–204.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds