organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro-4-nitro­phen­yl)morpholin-3-one

aTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: czq0601@gmail.com

(Received 16 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, C10H9FN2O4, the dihedral angle between the benzene ring and the nitro group plane is 11.29 (3)°. The morpholinone ring adopts a twist-chair conformation. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into a chain along the a-axis direction.

Related literature

The title compound is an inter­mediate in the preparation of derivatives of the factor Xa inhibitor rivaroxaban (systematic name (S)-5-chloro-N-{[2-oxo-3-[4-(3-oxomorpholin-4-yl)phen­yl]oxazolidin-5-yl]meth­yl}thio­phene-2-carboxamide). For the bioactivity and applications of rivaroxaban, see: Pinto et al. (2010[Pinto, D. J. P., Smallheer, J. M., Cheney, D. L., Knabb, R. M. & Wexler, R. R. (2010). J. Med. Chem. 53, 6243-6274.]); Haas (2008[Haas, S. (2008). J. Thromb. Thrombolysis, 25, 52-60.]); Squizzato et al. (2009[Squizzato, A., Dentali, F., Steidl, L. & Ageno, W. (2009). Int. Emerg. Med. 4, 479-484.]); Samama & Gerotziafas (2010[Samama, M. M. & Gerotziafas, G. T. (2010). J. Thromb. Thrombolysis, 29, 92-104.]); Van Huis et al. (2009[Van Huis, C. A., et al. (2009). Bioorg. Med. Chem. 17, 2501-2511.]). For the synthesis of other derivatives with morpholone, see: Van Huis et al. (2009[Van Huis, C. A., et al. (2009). Bioorg. Med. Chem. 17, 2501-2511.]); Zbinden et al. (2009[Zbinden, K. G., et al. (2009). Eur. J. Med. Chem. 44, 2787-2795.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9FN2O4

  • Mr = 240.19

  • Triclinic, [P \overline 1]

  • a = 6.6408 (7) Å

  • b = 7.3788 (10) Å

  • c = 10.8546 (14) Å

  • α = 73.30 (3)°

  • β = 75.39 (3)°

  • γ = 74.30 (3)°

  • V = 481.60 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: ψ scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.970, Tmax = 0.986

  • 6470 measured reflections

  • 2569 independent reflections

  • 1734 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 0.97

  • 2569 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.39 3.2635 (16) 153
C2—H2B⋯O3ii 0.99 2.50 3.3244 (19) 140
C1—H1B⋯O4iii 0.99 2.57 3.515 (2) 161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) -x+2, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Rivaroxaban is an oral, direct factor Xa inhibitor for the prevention and treatment of arterial and venous thrombosis (Pinto et al., 2010; Haas, 2008; Squizzato et al., 2009).

The title compound (Fig. 1) is important intermediate in the preparation of derivatives of Rivaroxaban. Some derivatives of Rivaroxaban have been reported for having high affinity for human FXa (Squizzato et al., 2009; Samama et al., 2010; Van Huis et al., 2009). Herein, the synthesis and the crystal structure of the title compound are reported.

In the title compound, C10H9F1N2O4, the dihedral angle between benzene ring and the plane of nitro group is 11.29 (3)°. The morpholone ring adopts a twist-chair conformation. In the crystal packing molecules are linked by intermolecular C—H···O hydrogen bonds into a chain (Table 1).

Related literature top

The title compound is an intermediate in the preparation of derivatives of the factor Xa inhibitor rivaroxaban (systematic name (S)-5-chloro-N-{[2-oxo-3-[4-(3-oxomorpholin-4-yl) phenyl]oxazolidin-5-yl]methyl} thiophene-2-carboxamide). For the bioactivity and applications of rivaroxaban, see: Pinto et al. (2010); Haas (2008); Squizzato et al. (2009); Samama et al. (2010); Van Huis et al. (2009); For the synthesis of other derivatives with morpholone, see: Van Huis et al. (2009); Zbinden et al. (2009).

Experimental top

Potassium carbonate (6.73 g, 0.0488 mol) was added to a suspension of 2-(2-chloroethoxy)-N-(3-fluoro-4-nitrophenyl)acetamide (9.00 g, 0.0325 mol) in acetonitrile (200 mL).The reaction mixture was stirred at 385 K for 5 h. The mixture was evaporated in vacuo. Water was added.The reaction mixture was filtered, washed with water, and dried to obtain yellow solid (7.19 g).Colourless single crystals suitable for X-ray diffraction were obtained by recrystallisation from ethanol and ethyl acetate.

Refinement top

All H atoms were geometrically positioned (C—H 0.95–0.99 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2009).

Figures top
[Figure 1] Fig. 1. The structure of C10H9F1N2O4 with all non-H atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
4-(3-Fluoro-4-nitrophenyl)morpholin-3-one top
Crystal data top
C10H9FN2O4Z = 2
Mr = 240.19F(000) = 248
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6408 (7) ÅCell parameters from 1909 reflections
b = 7.3788 (10) Åθ = 2.0–31.1°
c = 10.8546 (14) ŵ = 0.14 mm1
α = 73.30 (3)°T = 113 K
β = 75.39 (3)°Prism, colourless
γ = 74.30 (3)°0.22 × 0.20 × 0.10 mm
V = 481.60 (14) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2569 independent reflections
Radiation source: rotating anode1734 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.041
Detector resolution: 14.63 pixels mm-1θmax = 29.1°, θmin = 2.0°
ω and ϕ scansh = 99
Absorption correction: ψ scan
(CrystalClear; Rigaku/MSC, 2009)
k = 109
Tmin = 0.970, Tmax = 0.986l = 1414
6470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
2569 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H9FN2O4γ = 74.30 (3)°
Mr = 240.19V = 481.60 (14) Å3
Triclinic, P1Z = 2
a = 6.6408 (7) ÅMo Kα radiation
b = 7.3788 (10) ŵ = 0.14 mm1
c = 10.8546 (14) ÅT = 113 K
α = 73.30 (3)°0.22 × 0.20 × 0.10 mm
β = 75.39 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2569 independent reflections
Absorption correction: ψ scan
(CrystalClear; Rigaku/MSC, 2009)
1734 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.986Rint = 0.041
6470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.97Δρmax = 0.56 e Å3
2569 reflectionsΔρmin = 0.25 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.38071 (13)0.73231 (13)0.24062 (8)0.0292 (2)
O10.23003 (15)0.94560 (12)0.40672 (8)0.0192 (2)
O20.04787 (15)0.82852 (15)0.16307 (9)0.0262 (2)
O30.74637 (16)0.59970 (13)0.37865 (9)0.0241 (2)
O41.03428 (15)0.62270 (13)0.32888 (9)0.0234 (2)
N10.39251 (16)0.79057 (14)0.18692 (10)0.0139 (2)
N20.84043 (18)0.63168 (15)0.30564 (10)0.0165 (2)
C10.5325 (2)0.77071 (18)0.27977 (12)0.0161 (3)
H1A0.61520.87390.24560.019*
H1B0.63470.64430.28550.019*
C20.4068 (2)0.78419 (19)0.41571 (12)0.0201 (3)
H2A0.35500.66340.45990.024*
H2B0.50010.79960.46850.024*
C30.0821 (2)0.90024 (19)0.35316 (12)0.0183 (3)
H3A0.03491.01550.33820.022*
H3B0.01960.79560.41830.022*
C40.1736 (2)0.83638 (18)0.22515 (12)0.0164 (3)
C50.4968 (2)0.75696 (16)0.06139 (12)0.0132 (3)
C60.7205 (2)0.71941 (17)0.03016 (12)0.0160 (3)
H60.79880.71920.09240.019*
C70.8283 (2)0.68282 (17)0.09000 (12)0.0161 (3)
H70.97950.65910.10950.019*
C80.7182 (2)0.68025 (17)0.18264 (12)0.0143 (3)
C90.4967 (2)0.72366 (18)0.15317 (12)0.0158 (3)
C100.3858 (2)0.76283 (17)0.03458 (12)0.0160 (3)
H100.23450.79380.01780.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0201 (5)0.0495 (5)0.0226 (4)0.0038 (4)0.0079 (4)0.0158 (4)
O10.0176 (5)0.0226 (5)0.0198 (5)0.0014 (4)0.0046 (4)0.0102 (4)
O20.0134 (5)0.0476 (6)0.0235 (5)0.0093 (5)0.0009 (4)0.0173 (5)
O30.0289 (6)0.0285 (5)0.0192 (5)0.0068 (4)0.0067 (4)0.0099 (4)
O40.0162 (5)0.0297 (5)0.0214 (5)0.0027 (4)0.0012 (4)0.0078 (4)
N10.0125 (5)0.0173 (5)0.0125 (5)0.0031 (4)0.0020 (4)0.0049 (4)
N20.0192 (6)0.0143 (5)0.0148 (5)0.0029 (5)0.0020 (5)0.0028 (4)
C10.0135 (6)0.0200 (7)0.0159 (6)0.0013 (5)0.0055 (5)0.0056 (5)
C20.0196 (7)0.0234 (7)0.0158 (6)0.0000 (6)0.0051 (5)0.0053 (5)
C30.0162 (7)0.0218 (7)0.0173 (6)0.0031 (5)0.0026 (5)0.0063 (5)
C40.0147 (7)0.0177 (7)0.0163 (6)0.0045 (5)0.0007 (5)0.0044 (5)
C50.0153 (6)0.0117 (6)0.0129 (6)0.0041 (5)0.0021 (5)0.0029 (5)
C60.0154 (7)0.0182 (7)0.0162 (6)0.0045 (5)0.0048 (5)0.0043 (5)
C70.0133 (6)0.0181 (7)0.0175 (6)0.0041 (5)0.0027 (5)0.0047 (5)
C80.0161 (7)0.0134 (6)0.0132 (6)0.0033 (5)0.0014 (5)0.0036 (5)
C90.0166 (7)0.0180 (7)0.0153 (6)0.0042 (5)0.0071 (5)0.0036 (5)
C100.0111 (6)0.0188 (7)0.0183 (6)0.0018 (5)0.0035 (5)0.0051 (5)
Geometric parameters (Å, º) top
F1—C91.3438 (13)C2—H2B0.9900
O1—C31.4118 (14)C3—C41.5223 (18)
O1—C21.4286 (16)C3—H3A0.9900
O2—C41.2193 (14)C3—H3B0.9900
O3—N21.2292 (13)C5—C101.4050 (16)
O4—N21.2349 (13)C5—C61.4061 (18)
N1—C41.3823 (16)C6—C71.3831 (17)
N1—C51.4223 (16)C6—H60.9500
N1—C11.4885 (15)C7—C81.3910 (16)
N2—C81.4630 (16)C7—H70.9500
C1—C21.5171 (18)C8—C91.3912 (18)
C1—H1A0.9900C9—C101.3795 (18)
C1—H1B0.9900C10—H100.9500
C2—H2A0.9900
C3—O1—C2107.55 (9)C4—C3—H3B108.5
C4—N1—C5123.48 (11)H3A—C3—H3B107.5
C4—N1—C1120.11 (10)O2—C4—N1124.24 (12)
C5—N1—C1116.39 (10)O2—C4—C3117.50 (12)
O3—N2—O4123.82 (11)N1—C4—C3118.25 (11)
O3—N2—C8118.74 (11)C10—C5—C6118.08 (11)
O4—N2—C8117.43 (10)C10—C5—N1122.88 (11)
N1—C1—C2112.26 (10)C6—C5—N1119.03 (11)
N1—C1—H1A109.2C7—C6—C5120.88 (12)
C2—C1—H1A109.2C7—C6—H6119.6
N1—C1—H1B109.2C5—C6—H6119.6
C2—C1—H1B109.2C6—C7—C8120.88 (12)
H1A—C1—H1B107.9C6—C7—H7119.6
O1—C2—C1109.95 (10)C8—C7—H7119.6
O1—C2—H2A109.7C7—C8—C9118.10 (12)
C1—C2—H2A109.7C7—C8—N2118.60 (11)
O1—C2—H2B109.7C9—C8—N2123.31 (11)
C1—C2—H2B109.7F1—C9—C10116.88 (12)
H2A—C2—H2B108.2F1—C9—C8121.12 (12)
O1—C3—C4114.95 (11)C10—C9—C8121.99 (12)
O1—C3—H3A108.5C9—C10—C5119.97 (12)
C4—C3—H3A108.5C9—C10—H10120.0
O1—C3—H3B108.5C5—C10—H10120.0
C4—N1—C1—C26.24 (15)N1—C5—C6—C7178.93 (10)
C5—N1—C1—C2172.77 (10)C5—C6—C7—C80.66 (19)
C3—O1—C2—C170.39 (13)C6—C7—C8—C92.70 (19)
N1—C1—C2—O146.84 (14)C6—C7—C8—N2177.12 (11)
C2—O1—C3—C452.83 (13)O3—N2—C8—C7168.82 (11)
C5—N1—C4—O29.8 (2)O4—N2—C8—C710.19 (16)
C1—N1—C4—O2169.11 (11)O3—N2—C8—C910.99 (18)
C5—N1—C4—C3170.40 (11)O4—N2—C8—C9170.00 (11)
C1—N1—C4—C310.66 (17)C7—C8—C9—F1176.97 (10)
O1—C3—C4—O2167.37 (11)N2—C8—C9—F13.22 (19)
O1—C3—C4—N112.84 (16)C7—C8—C9—C101.95 (19)
C4—N1—C5—C101.57 (18)N2—C8—C9—C10177.87 (11)
C1—N1—C5—C10177.41 (11)F1—C9—C10—C5179.83 (10)
C4—N1—C5—C6177.30 (11)C8—C9—C10—C50.87 (19)
C1—N1—C5—C63.73 (16)C6—C5—C10—C92.90 (18)
C10—C5—C6—C72.16 (18)N1—C5—C10—C9178.23 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.393.2635 (16)153
C2—H2B···O3ii0.992.503.3244 (19)140
C1—H1B···O4iii0.992.573.515 (2)161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H9FN2O4
Mr240.19
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.6408 (7), 7.3788 (10), 10.8546 (14)
α, β, γ (°)73.30 (3), 75.39 (3), 74.30 (3)
V3)481.60 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionψ scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.970, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6470, 2569, 1734
Rint0.041
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 0.97
No. of reflections2569
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.25

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.393.2635 (16)153
C2—H2B···O3ii0.992.503.3244 (19)140
C1—H1B···O4iii0.992.573.515 (2)161
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+2, y+1, z.
 

Acknowledgements

The authors thank the State Key Laboratory of Elemento-organic Chemistry, Nankai University, for the data collection.

References

First citationHaas, S. (2008). J. Thromb. Thrombolysis, 25, 52–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPinto, D. J. P., Smallheer, J. M., Cheney, D. L., Knabb, R. M. & Wexler, R. R. (2010). J. Med. Chem. 53, 6243–6274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSamama, M. M. & Gerotziafas, G. T. (2010). J. Thromb. Thrombolysis, 29, 92–104.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSquizzato, A., Dentali, F., Steidl, L. & Ageno, W. (2009). Int. Emerg. Med. 4, 479–484.  CrossRef Google Scholar
First citationVan Huis, C. A., et al. (2009). Bioorg. Med. Chem. 17, 2501–2511.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZbinden, K. G., et al. (2009). Eur. J. Med. Chem. 44, 2787–2795.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds