organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β-Hy­dr­oxy­eremophil-7(11)-en-8β,12-olide

aCollege of Life and Environment Science, Minzu University of China, Beijing 100081, People's Republic of China
*Correspondence e-mail: wangws@muc.edu.cn

(Received 18 March 2011; accepted 29 April 2011; online 7 May 2011)

The title eremophilenolide, C15H22O3, is a natural compound isolated from Senecio laetus Edgew. The two cis-fused six-membered rings have chair confomations and the five-membered ring has a planar envelope conformation [maximum deviation = 0.010 (1) Å]. The β-hy­droxy group participates in inter­molecular O—H⋯O hydrogen bonding, forming mol­ecular chains along the a axis.

Related literature

For related compounds extracted from Ligularia fischeri and Ligularia duciformis, see: Wang et al. (2000[Wang, W. S., Gao, K., Yang, L. & Jia, Z. J. (2000). Planta Med. 66, 189-191.]) and Fu et al. (2007[Fu, K. Z., Yu, N. J., Zhang, Y. & Zhao, Y. M. (2007). Yaoxue Xuebao, 42, 621-624.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C15H22O3

  • Mr = 250.33

  • Orthorhombic, P 21 21 21

  • a = 8.0141 (16) Å

  • b = 9.969 (2) Å

  • c = 16.482 (3) Å

  • V = 1316.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.60 × 0.60 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.950, Tmax = 0.975

  • 8965 measured reflections

  • 1744 independent reflections

  • 1314 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 0.95

  • 1744 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 2.18 2.931 (2) 152
Symmetry code: (i) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Senecio laetus Edgew. grows in Guizhou province of China, and is traditionally used by the locals as medicine having effects on clearing fever and detoxifcation and relieving cough activities. As a part of our research on biological resources in the western area in China, the title compound, an eremophilenolide, was isolated. The compound was identified by NMR spectra, which were compared with the previous reports (Wang et al., 2000; Fu et al., 2007). Herewith, we present its crystal structure. The molecule consists of a fused three-ring system A/B/C(Fig.1). The rings A(C10–C6/C11)and B(C6–C3/C12–C11) are cis-fused; the hydroxy group at C12 site has the same β-orientation as the two methyl groups at C10 and C11. Rings A and B both are in chair conformations. The lactone ring has an envelope-like conformation with the atoms C1-C4 and O2 deviating from its mean plane by -0.002 (1), 0.008 (1), -0.010 (1), 0.007 (1) and -0.003 (1), respectively. The inter-molecular O—H···O hydrogen bonds apparently stabilize the crystal structure linking molecules into chains along [1 0 0].

Related literature top

For related compounds extracted from Ligularia fischeri and Ligularia duciformis, see: Wang et al. (2000) and Fu et al. (2007), respectively.

Experimental top

The air-dried whole plants of Senecio laetus (0.7 kg) were pulverized and triply extracted with MeOH (each time for 7 days) at room temperature. The extract was concentrated to give a residue (67 g), which was further separated by CC (SiO2, 200–300mesh, petroleum ether/EtOAc (20:1, 15:1, 10:1, 8:1, 5:1, 3:1, 2:1, 1:1 (v/v)) to yield 8 fractions: Fr. 1–8. Each fraction was examined by TLC and combined to afford many subfractions. Fr.5a (0.5 g) was subjected to CC (SiO2, 200–300mesh, petroleum ether/ EtOAc 10:1, 5:1 (v/v)) to provide the title compound (20 mg). 1H and 13C NMR spectral data of this compound was recorded on Bruker-AV-500 s pectrometer, using CDCl3 as solvent and Me4Si as internal standard. The stereochemistry was established by the X-ray diffraction experiment.

Refinement top

The hydrogen atoms were placed in calculated positions [d(O—H) = 0.82 Å] and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O). The positions of methyl and hydroxy hydrogens were rotationally optimized. In the absence of any significant anomalous scatterers in the molecule, the absolute configuration has been arbitrarily assigned. Friedel pairs have been averaged.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
6β-Hydroxyeremophil-7(11)-en-8β,12-olide top
Crystal data top
C15H22O3F(000) = 544
Mr = 250.33Dx = 1.263 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8965 reflections
a = 8.0141 (16) Åθ = 2.4–27.5°
b = 9.969 (2) ŵ = 0.09 mm1
c = 16.482 (3) ÅT = 293 K
V = 1316.8 (5) Å3Block, colourless
Z = 40.60 × 0.60 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1744 independent reflections
Radiation source: fine-focus sealed tube1314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 010
Tmin = 0.950, Tmax = 0.975k = 012
8965 measured reflectionsl = 021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
1744 reflectionsΔρmax = 0.21 e Å3
168 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.180 (11)
Crystal data top
C15H22O3V = 1316.8 (5) Å3
Mr = 250.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0141 (16) ŵ = 0.09 mm1
b = 9.969 (2) ÅT = 293 K
c = 16.482 (3) Å0.60 × 0.60 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1744 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1314 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.975Rint = 0.061
8965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.95Δρmax = 0.21 e Å3
1744 reflectionsΔρmin = 0.20 e Å3
168 parameters
Special details top

Experimental. Since the two skeleton methyl groups in eremophilenolides are in biogenic β orientation, we assigned the relative stereochemistry of the title eremophilenolide, by reference to the structures of related eremophilenolides in Wang et al. (2000) and Fu et al. (2007) although the absolute configuration could not be reliably determined from anomalous dispersion effects with Mo radiation used in the experiment. Furthermore, the relative stereochemistry in the title compound was confirmed by NMR data. 13C NMR(125 MHz, CDCl3, δ, p.p.m.): 175.15(C1), 162.95(C3), 122.08(C2), 77.55(C4), 70.18(C12), 45.60(C11), 35.88(C5), 35.31(C6), 31.68(C10), 28.33(C7), 28.33(C9), 20.17(C8), 18.96(C14), 15.14(C15), 8.93(C13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1478 (3)1.0934 (2)0.03828 (13)0.0498 (5)
C20.3268 (3)1.0825 (2)0.05855 (13)0.0440 (5)
C30.4112 (3)1.0805 (2)0.01139 (12)0.0413 (5)
C40.2914 (2)1.0938 (3)0.08081 (12)0.0481 (6)
H40.31301.17780.10990.058*
C50.3057 (3)0.9777 (3)0.13851 (14)0.0539 (6)
H5A0.26810.89620.11200.065*
H5B0.23540.99330.18540.065*
C60.4879 (3)0.9612 (3)0.16573 (12)0.0468 (5)
H60.49240.87960.19890.056*
C70.5409 (3)1.0768 (3)0.22055 (13)0.0549 (6)
H7A0.46731.08040.26720.066*
H7B0.52931.16060.19110.066*
C80.7215 (3)1.0626 (3)0.24987 (13)0.0614 (7)
H8A0.75291.14110.28110.074*
H8B0.73140.98450.28460.074*
C90.8371 (3)1.0479 (3)0.17726 (13)0.0550 (6)
H9A0.95061.03610.19650.066*
H9B0.83361.12970.14550.066*
C100.7906 (3)0.9293 (2)0.12286 (13)0.0497 (6)
H100.86220.93450.07480.060*
C110.6069 (2)0.9379 (2)0.09238 (12)0.0427 (5)
C120.5903 (2)1.0574 (2)0.03156 (12)0.0413 (5)
H120.63431.13840.05760.050*
C130.3809 (3)1.0747 (3)0.14545 (12)0.0561 (6)
H13A0.48071.12650.15280.084*
H13B0.29431.10960.17970.084*
H13C0.40240.98290.15960.084*
C140.5597 (3)0.8095 (2)0.04675 (15)0.0633 (7)
H14A0.64710.78640.00950.095*
H14B0.45780.82390.01730.095*
H14C0.54440.73770.08480.095*
C150.8317 (4)0.7963 (3)0.16557 (18)0.0727 (8)
H15A0.94690.79610.18150.109*
H15B0.81130.72300.12910.109*
H15C0.76250.78670.21280.109*
O10.0277 (2)1.09467 (19)0.08281 (10)0.0629 (5)
O20.12877 (17)1.09976 (19)0.04302 (9)0.0568 (5)
O30.67936 (19)1.0359 (2)0.04189 (9)0.0647 (6)
H30.77671.05940.03600.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (11)0.0585 (13)0.0476 (11)0.0017 (11)0.0011 (10)0.0074 (12)
C20.0401 (10)0.0499 (12)0.0420 (10)0.0017 (10)0.0004 (9)0.0037 (10)
C30.0377 (9)0.0479 (11)0.0383 (9)0.0040 (10)0.0045 (9)0.0014 (9)
C40.0310 (9)0.0733 (15)0.0399 (10)0.0022 (11)0.0015 (9)0.0018 (11)
C50.0352 (10)0.0824 (17)0.0441 (11)0.0036 (12)0.0082 (9)0.0135 (12)
C60.0361 (10)0.0641 (13)0.0403 (10)0.0009 (10)0.0069 (9)0.0113 (10)
C70.0448 (11)0.0820 (16)0.0378 (10)0.0094 (13)0.0056 (10)0.0024 (11)
C80.0484 (12)0.0904 (19)0.0455 (11)0.0002 (14)0.0053 (11)0.0075 (13)
C90.0384 (11)0.0781 (16)0.0486 (11)0.0010 (12)0.0044 (11)0.0014 (12)
C100.0381 (11)0.0629 (14)0.0481 (11)0.0058 (11)0.0048 (10)0.0028 (11)
C110.0356 (10)0.0507 (12)0.0418 (10)0.0012 (9)0.0024 (9)0.0009 (9)
C120.0327 (9)0.0556 (12)0.0357 (9)0.0045 (9)0.0031 (8)0.0033 (10)
C130.0574 (14)0.0724 (15)0.0386 (10)0.0003 (13)0.0000 (11)0.0016 (11)
C140.0605 (14)0.0576 (13)0.0717 (15)0.0026 (12)0.0018 (14)0.0084 (13)
C150.0631 (16)0.0726 (16)0.0825 (17)0.0173 (14)0.0060 (16)0.0115 (15)
O10.0436 (8)0.0838 (12)0.0612 (9)0.0014 (9)0.0117 (8)0.0080 (9)
O20.0333 (7)0.0884 (12)0.0488 (8)0.0062 (9)0.0030 (7)0.0099 (9)
O30.0375 (8)0.1178 (16)0.0388 (7)0.0027 (10)0.0079 (7)0.0008 (10)
Geometric parameters (Å, º) top
C1—O11.210 (3)C8—H8B0.9700
C1—O21.350 (3)C9—C101.530 (3)
C1—C21.477 (3)C9—H9A0.9700
C2—C31.337 (3)C9—H9B0.9700
C2—C131.499 (3)C10—C151.537 (3)
C3—C121.492 (3)C10—C111.557 (3)
C3—C41.500 (3)C10—H100.9800
C4—O21.445 (2)C11—C141.532 (3)
C4—C51.502 (3)C11—C121.563 (3)
C4—H40.9800C12—O31.421 (2)
C5—C61.536 (3)C12—H120.9800
C5—H5A0.9700C13—H13A0.9600
C5—H5B0.9700C13—H13B0.9600
C6—C71.525 (4)C13—H13C0.9600
C6—C111.557 (3)C14—H14A0.9600
C6—H60.9800C14—H14B0.9600
C7—C81.532 (3)C14—H14C0.9600
C7—H7A0.9700C15—H15A0.9600
C7—H7B0.9700C15—H15B0.9600
C8—C91.521 (3)C15—H15C0.9600
C8—H8A0.9700O3—H30.8200
O1—C1—O2120.8 (2)C8—C9—H9B109.0
O1—C1—C2129.5 (2)C10—C9—H9B109.0
O2—C1—C2109.71 (19)H9A—C9—H9B107.8
C3—C2—C1107.30 (19)C9—C10—C15110.24 (19)
C3—C2—C13132.62 (19)C9—C10—C11112.15 (19)
C1—C2—C13120.07 (19)C15—C10—C11113.4 (2)
C2—C3—C12132.96 (19)C9—C10—H10106.9
C2—C3—C4109.45 (18)C15—C10—H10106.9
C12—C3—C4117.38 (17)C11—C10—H10106.9
O2—C4—C3104.59 (16)C14—C11—C6110.74 (18)
O2—C4—C5111.93 (18)C14—C11—C10110.26 (19)
C3—C4—C5111.4 (2)C6—C11—C10109.67 (16)
O2—C4—H4109.6C14—C11—C12107.52 (16)
C3—C4—H4109.6C6—C11—C12109.39 (17)
C5—C4—H4109.6C10—C11—C12109.22 (17)
C4—C5—C6109.90 (18)O3—C12—C3108.46 (17)
C4—C5—H5A109.7O3—C12—C11112.88 (18)
C6—C5—H5A109.7C3—C12—C11110.02 (16)
C4—C5—H5B109.7O3—C12—H12108.5
C6—C5—H5B109.7C3—C12—H12108.5
H5A—C5—H5B108.2C11—C12—H12108.5
C7—C6—C5110.9 (2)C2—C13—H13A109.5
C7—C6—C11113.71 (18)C2—C13—H13B109.5
C5—C6—C11111.80 (17)H13A—C13—H13B109.5
C7—C6—H6106.7C2—C13—H13C109.5
C5—C6—H6106.7H13A—C13—H13C109.5
C11—C6—H6106.7H13B—C13—H13C109.5
C6—C7—C8112.3 (2)C11—C14—H14A109.5
C6—C7—H7A109.1C11—C14—H14B109.5
C8—C7—H7A109.1H14A—C14—H14B109.5
C6—C7—H7B109.1C11—C14—H14C109.5
C8—C7—H7B109.1H14A—C14—H14C109.5
H7A—C7—H7B107.9H14B—C14—H14C109.5
C9—C8—C7109.66 (18)C10—C15—H15A109.5
C9—C8—H8A109.7C10—C15—H15B109.5
C7—C8—H8A109.7H15A—C15—H15B109.5
C9—C8—H8B109.7C10—C15—H15C109.5
C7—C8—H8B109.7H15A—C15—H15C109.5
H8A—C8—H8B108.2H15B—C15—H15C109.5
C8—C9—C10112.8 (2)C1—O2—C4108.92 (16)
C8—C9—H9A109.0C12—O3—H3109.5
C10—C9—H9A109.0
O1—C1—C2—C3177.7 (3)C7—C6—C11—C1050.5 (2)
O2—C1—C2—C31.0 (3)C5—C6—C11—C10177.0 (2)
O1—C1—C2—C131.6 (4)C7—C6—C11—C1269.2 (2)
O2—C1—C2—C13179.7 (2)C5—C6—C11—C1257.3 (2)
C1—C2—C3—C12172.8 (2)C9—C10—C11—C14173.30 (18)
C13—C2—C3—C126.4 (4)C15—C10—C11—C1447.6 (3)
C1—C2—C3—C41.6 (3)C9—C10—C11—C651.1 (2)
C13—C2—C3—C4179.2 (3)C15—C10—C11—C674.6 (3)
C2—C3—C4—O21.6 (3)C9—C10—C11—C1268.8 (2)
C12—C3—C4—O2173.75 (18)C15—C10—C11—C12165.52 (19)
C2—C3—C4—C5122.8 (2)C2—C3—C12—O30.9 (3)
C12—C3—C4—C552.6 (3)C4—C3—C12—O3174.9 (2)
O2—C4—C5—C6170.32 (18)C2—C3—C12—C11123.0 (3)
C3—C4—C5—C653.6 (3)C4—C3—C12—C1151.0 (3)
C4—C5—C6—C769.5 (2)C14—C11—C12—O352.3 (2)
C4—C5—C6—C1158.5 (3)C6—C11—C12—O3172.67 (16)
C5—C6—C7—C8179.21 (18)C10—C11—C12—O367.3 (2)
C11—C6—C7—C853.8 (3)C14—C11—C12—C369.0 (2)
C6—C7—C8—C955.2 (3)C6—C11—C12—C351.4 (2)
C7—C8—C9—C1056.9 (3)C10—C11—C12—C3171.41 (18)
C8—C9—C10—C1571.1 (3)O1—C1—O2—C4178.9 (2)
C8—C9—C10—C1156.3 (3)C2—C1—O2—C40.1 (3)
C7—C6—C11—C14172.43 (19)C3—C4—O2—C11.0 (3)
C5—C6—C11—C1461.0 (3)C5—C4—O2—C1121.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.182.931 (2)152
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H22O3
Mr250.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.0141 (16), 9.969 (2), 16.482 (3)
V3)1316.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.60 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.950, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
8965, 1744, 1314
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.107, 0.95
No. of reflections1744
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.182.931 (2)152
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The project was supported by the 985 Project (MUC985) Minzu University of China, and the Major Project for Young Teachers in Minzu University of China CUN10A, together with the "Programme of Introducing Talents of Discipline to Universities" (B08044), and the "Project for Scientific and Technical Achievements in Industrialization", Beijing Education Commission.

References

First citationFu, K. Z., Yu, N. J., Zhang, Y. & Zhao, Y. M. (2007). Yaoxue Xuebao, 42, 621–624.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. S., Gao, K., Yang, L. & Jia, Z. J. (2000). Planta Med. 66, 189–191.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds