organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-N′,N′′-di­cyclo­hexyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo–CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 14 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title compound, C19H30N3O2P, the central P atom has a distorted tetra­hedral configuration. The N atoms in both cyclo­hexyl­amide moieties exhibit a slight deviation [0.32 (7) and 0.44 (6) Å] from planarity, while the benzoyl­amide N atom is planar [0.11 (3) Å]. In the crystal, mol­ecules are linked via N—H⋯O(P) and N—H⋯O(C) hydrogen bonds, forming R22(10) rings within linear arrangements parallel to the b axis.

Related literature

For the synthesis and a spectroscopic study of title compound, see: Gholivand et al. (2006[Gholivand, K., Mojahed, F., Madani Alizadehgan, A. & Bijanzadeh, H. R. (2006). Z. Anorg. Allg. Chem. 632, 1570-1577.]). For bond lengths in related structures, see: Sabbaghi et al. (2010[Sabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.]); Rudd et al. (1996[Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759-774.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H30N3O2P

  • Mr = 363.43

  • Monoclinic, C c

  • a = 20.9904 (17) Å

  • b = 5.1503 (2) Å

  • c = 21.1125 (18) Å

  • β = 121.955 (11)°

  • V = 1936.5 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.28 × 0.05 × 0.01 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 1.000

  • 2758 measured reflections

  • 2758 independent reflections

  • 2294 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.122

  • S = 1.05

  • 2758 reflections

  • 239 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 908 Friedel pairs

  • Flack parameter: 0.11 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O3i 0.90 (4) 2.16 (4) 2.988 (4) 154 (3)
N5—H5⋯O2ii 0.77 (5) 2.30 (6) 3.019 (5) 156 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of the title compound, C6H5C(O)NHP(O)[NHC6H11]2, was previously published by Gholivand et al. (2006). Here, we report its crystal structure (Fig. 1).

The PO, CO and P—N bond lengths match those found for other compounds with the [(N)(N)P(O)NHC(O)] skeleton (Sabbaghi et al., 2010). The nitrogen atoms show sp2 character and the environment of N atom in C(O)NHP(O) moiety is practically planar. The tetrahedral configuration of phosphorus atom is significantly distorted (Fig. 1) as it has been noted for other phosphoric triamides and their chalco-derivatives (Rudd et al., 1996): the bond angles at the P atom vary in the range from 102.7 (2)° to 117.2 (2)°, while the P–N bond distances range form 1.615 (4) to 1.730 (4) Å. Cyclohexyl groups are in a chair conformation with the adjacent NH groups oriented equatorially.

The NH unit of the C(O)NHP(O) moiety adopts a syn orientation with respect to the phosphoryl group; moreover, the NH units of two C6H11NH moieties are in a syn orientation with respect to each other.

In the crystal structure, the molecules are linked via N—H···OP and N—H···OC hydrogen bonds, in which carbonyl oxygen interacts with benzamide N—H and P(O) group binds to a cyclohexylamido moiety. This way, R22(10) rings are built (Etter et al., 1990; Bernstein et al., 1995), that are further connected in linear arrangements along y axis (Table 1, Fig. 2).

Related literature top

For the synthesis and a spectroscopic study of title compound, see: Gholivand et al. (2006). For bond lengths in related structures, see: Sabbaghi et al. (2010); Rudd et al. (1996). For hydrogen-bond motifs, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

C6H5C(O)NHP(O)[NHC6H11]2 was prepared according to the procedure reported by Gholivand et al. (2006). Single crystals of title compound were obtained from CH3OH after slow evaporation at room temperature.

Refinement top

At the end of the refinement the highest peak in the electron density was 0.460 e Å -3, while the deepest hole was -0.180 e Å -3.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through N—H···O hydrogen bonds (along the b axis) which are shown as dotted lines. H atoms not involved in the hydrogen bondings are omitted.
N-Benzoyl-N',N''-dicyclohexylphosphoric triamide top
Crystal data top
C19H30N3O2PF(000) = 784
Mr = 363.43Dx = 1.247 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54180 Å
Hall symbol: C -2ycCell parameters from 1733 reflections
a = 20.9904 (17) Åθ = 4.2–70.2°
b = 5.1503 (2) ŵ = 1.39 mm1
c = 21.1125 (18) ÅT = 293 K
β = 121.955 (11)°Prismatic, colorless
V = 1936.5 (2) Å30.28 × 0.05 × 0.01 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2758 independent reflections
Radiation source: Enhance (Cu) X-ray Source2294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 10.2673 pixels mm-1θmax = 70.3°, θmin = 4.8°
ω scansh = 2424
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 06
Tmin = 0.978, Tmax = 1.000l = 2525
2758 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0489P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2758 reflectionsΔρmax = 0.46 e Å3
239 parametersΔρmin = 0.18 e Å3
2 restraintsAbsolute structure: Flack (1983), 908 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (4)
Crystal data top
C19H30N3O2PV = 1936.5 (2) Å3
Mr = 363.43Z = 4
Monoclinic, CcCu Kα radiation
a = 20.9904 (17) ŵ = 1.39 mm1
b = 5.1503 (2) ÅT = 293 K
c = 21.1125 (18) Å0.28 × 0.05 × 0.01 mm
β = 121.955 (11)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2758 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2294 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 1.000Rint = 0.064
2758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.46 e Å3
S = 1.05Δρmin = 0.18 e Å3
2758 reflectionsAbsolute structure: Flack (1983), 908 Friedel pairs
239 parametersAbsolute structure parameter: 0.11 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.00072 (6)0.2629 (2)0.30701 (6)0.0403 (2)
O20.02706 (18)0.5292 (5)0.30029 (19)0.0504 (8)
O30.11281 (18)0.1251 (6)0.3206 (2)0.0578 (9)
N40.0865 (2)0.3029 (6)0.3150 (2)0.0435 (8)
N50.0520 (2)0.0724 (7)0.2376 (2)0.0438 (9)
N60.0150 (2)0.0959 (8)0.3781 (2)0.0458 (9)
C70.1289 (2)0.1008 (8)0.3169 (2)0.0398 (9)
C80.1958 (2)0.1615 (7)0.3117 (2)0.0401 (9)
C90.1990 (3)0.3714 (9)0.2727 (3)0.0490 (11)
H90.15980.49050.25180.059*
C100.2585 (3)0.4083 (11)0.2640 (3)0.0616 (13)
H100.25900.54920.23670.074*
C110.3180 (3)0.2347 (12)0.2961 (3)0.0677 (14)
H110.35870.26000.29070.081*
C120.3169 (3)0.0239 (12)0.3362 (3)0.0722 (16)
H120.35690.09230.35770.087*
C130.2559 (3)0.0130 (10)0.3440 (3)0.0533 (12)
H130.25490.15460.37080.064*
C140.0945 (2)0.1484 (9)0.1595 (2)0.0451 (10)
H140.12030.31200.15540.054*
C150.1535 (3)0.0560 (13)0.1154 (3)0.0727 (17)
H15A0.18720.06650.13360.087*
H15B0.12920.22340.12350.087*
C160.1994 (3)0.0014 (16)0.0314 (3)0.0846 (19)
H16A0.23370.14130.00550.102*
H16B0.22900.15710.02250.102*
C170.1502 (3)0.0381 (11)0.0011 (3)0.0638 (13)
H17B0.18060.08620.05110.077*
H17A0.12510.12410.00450.077*
C180.0922 (4)0.2463 (12)0.0436 (4)0.0774 (17)
H18A0.11720.41250.03520.093*
H18B0.05890.25790.02500.093*
C190.0464 (3)0.1896 (13)0.1269 (3)0.0683 (16)
H19A0.01620.03560.13560.082*
H19B0.01240.33350.15250.082*
C200.0677 (2)0.1637 (8)0.4557 (2)0.0426 (9)
H200.09620.31510.45620.051*
C210.1229 (3)0.0486 (12)0.4978 (3)0.0685 (15)
H21A0.15330.07580.47630.082*
H21B0.09560.20810.49160.082*
C220.1746 (3)0.0067 (15)0.5810 (3)0.0805 (19)
H22A0.20540.14480.60550.097*
H22B0.20770.14980.58780.097*
C230.1303 (3)0.0742 (10)0.6167 (3)0.0650 (14)
H23B0.10190.07620.61550.078*
H23A0.16460.12180.66850.078*
C240.0777 (4)0.2951 (13)0.5762 (3)0.0771 (18)
H24A0.10680.45050.58290.093*
H24B0.04770.32710.59790.093*
C250.0261 (3)0.2433 (12)0.4937 (3)0.0654 (15)
H25A0.00290.39870.46970.078*
H25B0.00880.10660.48680.078*
H40.1046 (19)0.457 (7)0.3124 (19)0.015 (8)*
H60.014 (3)0.052 (9)0.371 (3)0.037 (13)*
H50.038 (3)0.067 (11)0.248 (3)0.062 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0447 (5)0.0336 (4)0.0472 (5)0.0016 (5)0.0276 (4)0.0017 (5)
O20.0546 (17)0.0351 (15)0.071 (2)0.0019 (13)0.0401 (17)0.0037 (14)
O30.061 (2)0.0334 (17)0.089 (3)0.0009 (14)0.047 (2)0.0017 (15)
N40.0453 (19)0.0326 (18)0.060 (2)0.0006 (15)0.0333 (18)0.0008 (15)
N50.048 (2)0.035 (2)0.047 (2)0.0003 (16)0.0244 (18)0.0047 (16)
N60.054 (2)0.044 (2)0.046 (2)0.0048 (18)0.0301 (19)0.0002 (17)
C70.0389 (19)0.036 (2)0.045 (2)0.0004 (17)0.0228 (18)0.0000 (17)
C80.041 (2)0.0367 (19)0.042 (2)0.0018 (17)0.0213 (18)0.0041 (17)
C90.052 (3)0.045 (2)0.059 (3)0.002 (2)0.035 (2)0.003 (2)
C100.068 (3)0.062 (3)0.076 (3)0.003 (3)0.053 (3)0.003 (3)
C110.055 (3)0.074 (4)0.091 (4)0.011 (3)0.050 (3)0.019 (3)
C120.037 (3)0.076 (4)0.091 (4)0.011 (2)0.026 (3)0.016 (3)
C130.046 (2)0.049 (3)0.057 (3)0.006 (2)0.022 (2)0.002 (2)
C140.048 (2)0.042 (2)0.045 (3)0.0027 (19)0.024 (2)0.0002 (19)
C150.064 (3)0.103 (5)0.050 (3)0.034 (3)0.030 (3)0.006 (3)
C160.059 (3)0.116 (5)0.064 (4)0.015 (3)0.023 (3)0.008 (4)
C170.079 (3)0.057 (3)0.052 (3)0.003 (3)0.032 (3)0.004 (2)
C180.107 (4)0.070 (4)0.067 (4)0.019 (4)0.054 (4)0.003 (3)
C190.060 (3)0.091 (4)0.056 (3)0.024 (3)0.033 (3)0.001 (3)
C200.045 (2)0.041 (2)0.045 (2)0.0004 (18)0.025 (2)0.0032 (18)
C210.074 (3)0.077 (4)0.057 (3)0.027 (3)0.037 (3)0.010 (3)
C220.065 (3)0.114 (5)0.051 (4)0.028 (4)0.022 (3)0.018 (3)
C230.083 (4)0.055 (3)0.053 (3)0.001 (3)0.034 (3)0.004 (2)
C240.102 (5)0.075 (4)0.056 (3)0.017 (4)0.043 (3)0.000 (3)
C250.071 (3)0.078 (4)0.057 (3)0.023 (3)0.040 (3)0.006 (3)
Geometric parameters (Å, º) top
P1—O21.468 (3)C16—C171.487 (8)
P1—N61.615 (4)C16—H16A0.9700
P1—N51.618 (4)C16—H16B0.9700
P1—N41.730 (4)C17—C181.509 (8)
O3—C71.225 (5)C17—H17B0.9700
N4—C71.356 (5)C17—H17A0.9700
N4—H40.90 (4)C18—C191.521 (9)
N5—C141.454 (6)C18—H18A0.9700
N5—H50.77 (5)C18—H18B0.9700
N6—C201.453 (6)C19—H19A0.9700
N6—H60.78 (4)C19—H19B0.9700
C7—C81.499 (6)C20—C211.496 (7)
C8—C91.382 (6)C20—C251.521 (6)
C8—C131.397 (6)C20—H200.9800
C9—C101.366 (7)C21—C221.525 (8)
C9—H90.9300C21—H21A0.9700
C10—C111.387 (8)C21—H21B0.9700
C10—H100.9300C22—C231.514 (8)
C11—C121.383 (9)C22—H22A0.9700
C11—H110.9300C22—H22B0.9700
C12—C131.389 (7)C23—C241.498 (8)
C12—H120.9300C23—H23B0.9700
C13—H130.9300C23—H23A0.9700
C14—C191.507 (7)C24—C251.511 (8)
C14—C151.513 (7)C24—H24A0.9700
C14—H140.9800C24—H24B0.9700
C15—C161.533 (8)C25—H25A0.9700
C15—H15A0.9700C25—H25B0.9700
C15—H15B0.9700
O2—P1—N6117.2 (2)C16—C17—C18111.1 (5)
O2—P1—N5115.7 (2)C16—C17—H17B109.4
N6—P1—N5102.73 (19)C18—C17—H17B109.4
O2—P1—N4103.77 (18)C16—C17—H17A109.4
N6—P1—N4107.5 (2)C18—C17—H17A109.4
N5—P1—N4109.79 (19)H17B—C17—H17A108.0
C7—N4—P1123.0 (3)C17—C18—C19111.6 (5)
C7—N4—H4113 (2)C17—C18—H18A109.3
P1—N4—H4124 (2)C19—C18—H18A109.3
C14—N5—P1125.4 (3)C17—C18—H18B109.3
C14—N5—H5120 (4)C19—C18—H18B109.3
P1—N5—H5109 (4)H18A—C18—H18B108.0
C20—N6—P1125.2 (3)C14—C19—C18112.8 (5)
C20—N6—H6113 (4)C14—C19—H19A109.0
P1—N6—H6112 (4)C18—C19—H19A109.0
O3—C7—N4122.2 (4)C14—C19—H19B109.0
O3—C7—C8120.2 (4)C18—C19—H19B109.0
N4—C7—C8117.6 (3)H19A—C19—H19B107.8
C9—C8—C13118.6 (4)N6—C20—C21112.4 (4)
C9—C8—C7123.4 (4)N6—C20—C25110.6 (4)
C13—C8—C7117.9 (4)C21—C20—C25111.4 (4)
C10—C9—C8121.6 (5)N6—C20—H20107.4
C10—C9—H9119.2C21—C20—H20107.4
C8—C9—H9119.2C25—C20—H20107.4
C9—C10—C11119.7 (5)C20—C21—C22113.7 (5)
C9—C10—H10120.1C20—C21—H21A108.8
C11—C10—H10120.1C22—C21—H21A108.8
C12—C11—C10120.2 (5)C20—C21—H21B108.8
C12—C11—H11119.9C22—C21—H21B108.8
C10—C11—H11119.9H21A—C21—H21B107.7
C11—C12—C13119.6 (5)C23—C22—C21111.5 (5)
C11—C12—H12120.2C23—C22—H22A109.3
C13—C12—H12120.2C21—C22—H22A109.3
C12—C13—C8120.3 (5)C23—C22—H22B109.3
C12—C13—H13119.9C21—C22—H22B109.3
C8—C13—H13119.9H22A—C22—H22B108.0
N5—C14—C19113.5 (4)C24—C23—C22110.6 (5)
N5—C14—C15108.8 (4)C24—C23—H23B109.5
C19—C14—C15110.2 (4)C22—C23—H23B109.5
N5—C14—H14108.1C24—C23—H23A109.5
C19—C14—H14108.1C22—C23—H23A109.5
C15—C14—H14108.1H23B—C23—H23A108.1
C14—C15—C16112.7 (5)C23—C24—C25112.7 (5)
C14—C15—H15A109.1C23—C24—H24A109.1
C16—C15—H15A109.1C25—C24—H24A109.1
C14—C15—H15B109.1C23—C24—H24B109.1
C16—C15—H15B109.1C25—C24—H24B109.1
H15A—C15—H15B107.8H24A—C24—H24B107.8
C17—C16—C15111.6 (5)C24—C25—C20113.2 (5)
C17—C16—H16A109.3C24—C25—H25A108.9
C15—C16—H16A109.3C20—C25—H25A108.9
C17—C16—H16B109.3C24—C25—H25B108.9
C15—C16—H16B109.3C20—C25—H25B108.9
H16A—C16—H16B108.0H25A—C25—H25B107.8
O2—P1—N4—C7174.9 (4)C7—C8—C13—C12175.4 (4)
N6—P1—N4—C760.3 (4)P1—N5—C14—C1974.0 (5)
N5—P1—N4—C750.7 (4)P1—N5—C14—C15162.9 (4)
O2—P1—N5—C1437.2 (4)N5—C14—C15—C16177.7 (5)
N6—P1—N5—C14166.0 (4)C19—C14—C15—C1652.6 (7)
N4—P1—N5—C1479.8 (4)C14—C15—C16—C1754.8 (8)
O2—P1—N6—C2061.0 (4)C15—C16—C17—C1855.0 (8)
N5—P1—N6—C20171.1 (4)C16—C17—C18—C1955.1 (8)
N4—P1—N6—C2055.2 (4)N5—C14—C19—C18175.1 (5)
P1—N4—C7—O37.5 (6)C15—C14—C19—C1852.8 (7)
P1—N4—C7—C8170.5 (3)C17—C18—C19—C1454.7 (8)
O3—C7—C8—C9147.1 (4)P1—N6—C20—C21124.3 (4)
N4—C7—C8—C931.0 (6)P1—N6—C20—C25110.5 (4)
O3—C7—C8—C1328.7 (6)N6—C20—C21—C22174.9 (5)
N4—C7—C8—C13153.3 (4)C25—C20—C21—C2250.1 (7)
C13—C8—C9—C101.2 (7)C20—C21—C22—C2353.6 (7)
C7—C8—C9—C10174.5 (5)C21—C22—C23—C2454.7 (7)
C8—C9—C10—C111.2 (8)C22—C23—C24—C2555.0 (7)
C9—C10—C11—C120.5 (8)C23—C24—C25—C2052.9 (7)
C10—C11—C12—C130.1 (8)N6—C20—C25—C24175.3 (5)
C11—C12—C13—C80.1 (8)C21—C20—C25—C2449.5 (7)
C9—C8—C13—C120.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.90 (4)2.16 (4)2.988 (4)154 (3)
N5—H5···O2ii0.77 (5)2.30 (6)3.019 (5)156 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H30N3O2P
Mr363.43
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)20.9904 (17), 5.1503 (2), 21.1125 (18)
β (°) 121.955 (11)
V3)1936.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)1.39
Crystal size (mm)0.28 × 0.05 × 0.01
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.978, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2758, 2758, 2294
Rint0.064
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.122, 1.05
No. of reflections2758
No. of parameters239
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.18
Absolute structureFlack (1983), 908 Friedel pairs
Absolute structure parameter0.11 (4)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O3i0.90 (4)2.16 (4)2.988 (4)154 (3)
N5—H5···O2ii0.77 (5)2.30 (6)3.019 (5)156 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

Financial support from the Spanish Ministerio de Ciencia e Innovación (MAT2006–01997, MAT2010–15094 and `Factoría de Cristalización' Consolider Ingenio 2010) and FEDER funding is acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGholivand, K., Mojahed, F., Madani Alizadehgan, A. & Bijanzadeh, H. R. (2006). Z. Anorg. Allg. Chem. 632, 1570–1577.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.  CrossRef CAS Web of Science Google Scholar
First citationSabbaghi, F., Pourayoubi, M., Toghraee, M. & Divjakovic, V. (2010). Acta Cryst. E66, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds