organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­ethanaminium) bi­phenyl-4,4′-di­carboxyl­ate

aDepartment of Chemistry and Life Sciences, Xiangnan University, Chenzhou 423000, People's Republic of China, and bCollege of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
*Correspondence e-mail: gzxian2010@yahoo.cn

(Received 25 March 2011; accepted 11 April 2011; online 7 May 2011)

In the title compound, 2C2H8NO+·C14H8O42−, the dihedral angle between the benzene rings of the dianion is 9.95 (12)°. In the crystal, the cations and anions are linked via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, generating layers lying parallel to (001).

Related literature

For backround to organic salts, see: Holman et al. (2001[Holman, K. T., Martin, S. M., Parker, D. P. & Ward, M. D. (2001). J. Am. Chem. Soc. 123, 4421-4431.]); Plaut et al. (2000[Plaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769-770.]); Russell et al. (1997[Russell, V. A., Evans, C. C., Li, W. J. & Ward, M. D. (1997). Science, 276, 575-579.]). For hydrogen-bond networks in related compounds, see; Ranganathan et al., (1999[Ranganathan, A., Pedireddi, V. R. & Rao, C. N. R. (1999). J. Am. Chem. Soc. 121, 1752-1753.]); Swift et al. (1998[Swift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc. 120, 5887-5894.]); Zhang & Chen (2005[Zhang, X.-L. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 617-622.]); Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H8NO+·C14H8O42−

  • Mr = 364.39

  • Orthorhombic, P b c a

  • a = 7.3410 (7) Å

  • b = 12.4094 (13) Å

  • c = 38.074 (4) Å

  • V = 3468.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.981

  • 14999 measured reflections

  • 3380 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.173

  • S = 1.08

  • 3380 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O1 0.87 (4) 1.94 (4) 2.793 (3) 165 (4)
N1—H1A⋯O2 0.96 (4) 1.76 (4) 2.704 (3) 169 (3)
N1—H1B⋯O3i 0.94 (4) 1.87 (4) 2.807 (3) 180 (4)
N1—H1C⋯O1ii 0.90 (4) 2.09 (4) 2.892 (3) 149 (3)
O6—H6O⋯O4 0.92 (4) 1.89 (4) 2.778 (3) 164 (4)
N2—H2A⋯O3 0.95 (3) 1.82 (4) 2.759 (3) 170 (3)
N2—H2B⋯O4iii 0.95 (4) 2.00 (4) 2.854 (3) 149 (3)
N2—H2C⋯O1iv 0.95 (4) 1.91 (4) 2.866 (3) 174 (4)
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic crystals built from acid-base complexes have received much attention in the predictable assembly of supramolecular architectures (Holman et al., 2001; Plaut et al., 2000; Russell et al., 1997). One of the most important applications, is the use of self-assembly of small molecules with O—H···O, N—H···O and other weaker intermolecular interactions to create one-, two- and three-dimensional networks (Ranganathan et al., 1999; Swift et al., 1998; Zhang et al., 2005). Aromatic acids have attracted our interest because of their importance in crystal engineering and they can form strong directional hydrogen bonds (Bhogala & Nangia, 2003). It is known that ethanolamine (ED) is a good organic base and has hydrogen-bond donor sites. Therefore, combinations of 4,4'-dicarboxyl-biphenyl(BDB) with ethanolamine molecules may be expected to display an interesting network. Herein, we report the crystal structure of the title organic salt (I).

The asymmetric unit of (I) is composed of two independent ED+ cations and one BDB2- dianion (Fig. 1). The protons of two carboxyl groups from BDB are transferred to the amido groups of ED. The dihedral angle between the two benzene rings of the BDB2- dianion is 9.95 (12) °. In the crystal, dianions and cations are linked via intermolecular O—H···O and N—H···O hydrogen bonds to form a two-dimensional network parallel to (001) which includes R22(9) rings (Bernstein et al., 1995).

Related literature top

For backround to organic salts, see: Holman et al. (2001); Plaut et al. (2000); Russell et al. (1997). For hydrogen-bond networks in related compounds, see; Ranganathan et al., (1999); Swift et al. (1998); Zhang & Chen (2005); Bhogala & Nangia (2003). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

BDB (0.024 g, 0.01 mmol) and ED (0.012 g, 0.02 mol) were dissolved in hot EtOH/H2O (1:1) solution (20 mL). The solution was allowed to cool to room temperature and was evaporated in air for 4 days to give colorless crystals of the title compound (yield: 23%).

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing a two-dimensional hydrogen-bonded (dashed lines) layer parallel to (001).
Bis(2-hydroxyethanaminium) biphenyl-4,4'-dicarboxylate top
Crystal data top
2C2H8NO+·C14H8O42F(000) = 1552
Mr = 364.39Dx = 1.396 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3380 reflections
a = 7.3410 (7) Åθ = 2.1–26.0°
b = 12.4094 (13) ŵ = 0.11 mm1
c = 38.074 (4) ÅT = 293 K
V = 3468.5 (6) Å3Block, colorless
Z = 80.30 × 0.27 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
3380 independent reflections
Radiation source: fine-focus sealed tube2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.969, Tmax = 0.981k = 1514
14999 measured reflectionsl = 2746
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0845P)2 + 1.5997P]
where P = (Fo2 + 2Fc2)/3
3380 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
2C2H8NO+·C14H8O42V = 3468.5 (6) Å3
Mr = 364.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3410 (7) ŵ = 0.11 mm1
b = 12.4094 (13) ÅT = 293 K
c = 38.074 (4) Å0.30 × 0.27 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
3380 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2606 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.981Rint = 0.044
14999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.47 e Å3
3380 reflectionsΔρmin = 0.18 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0874 (3)0.00499 (14)0.14379 (4)0.0385 (5)
O20.3194 (3)0.10392 (16)0.12492 (5)0.0489 (6)
O30.0498 (3)0.35559 (14)0.13128 (5)0.0377 (5)
O40.2920 (3)0.25707 (14)0.14555 (4)0.0384 (5)
C10.1729 (3)0.00670 (18)0.08337 (6)0.0264 (5)
C20.2609 (4)0.0429 (2)0.05568 (6)0.0319 (6)
H20.32720.10560.05970.038*
C30.2524 (3)0.0012 (2)0.02219 (6)0.0310 (6)
H30.31240.03650.00400.037*
C40.1558 (3)0.09265 (18)0.01495 (6)0.0240 (5)
C50.0640 (4)0.1404 (2)0.04283 (6)0.0337 (6)
H50.00370.20260.03890.040*
C60.0711 (4)0.0977 (2)0.07628 (6)0.0339 (6)
H60.00630.13070.09430.041*
C70.1556 (3)0.14109 (18)0.02092 (6)0.0256 (5)
C80.2715 (4)0.1027 (2)0.04696 (6)0.0329 (6)
H80.34650.04410.04210.039*
C90.2776 (4)0.1497 (2)0.07989 (6)0.0324 (6)
H90.35940.12390.09650.039*
C100.1640 (3)0.23463 (18)0.08846 (6)0.0263 (5)
C110.0479 (4)0.2731 (2)0.06293 (7)0.0362 (6)
H110.02990.33000.06810.043*
C120.0455 (4)0.2282 (2)0.02960 (7)0.0374 (7)
H120.03160.25710.01270.045*
C130.1935 (4)0.03813 (19)0.11985 (6)0.0311 (6)
C140.1693 (3)0.28548 (19)0.12432 (6)0.0290 (6)
O50.2304 (3)0.09198 (17)0.20556 (6)0.0521 (6)
H5O0.206 (5)0.066 (3)0.1849 (10)0.081 (13)*
C150.1517 (5)0.1945 (2)0.21076 (8)0.0503 (8)
H15A0.12410.20340.23550.060*
H15B0.03780.19820.19790.060*
C160.2713 (5)0.2841 (2)0.19924 (7)0.0480 (8)
H16A0.22420.35150.20840.058*
H16B0.39230.27350.20890.058*
N10.2835 (4)0.2910 (2)0.16066 (6)0.0386 (6)
H1A0.310 (4)0.224 (3)0.1494 (9)0.059 (10)*
H1B0.172 (5)0.313 (3)0.1509 (9)0.056 (10)*
H1C0.362 (5)0.342 (3)0.1539 (9)0.059 (10)*
O60.2281 (4)0.34359 (17)0.21172 (6)0.0619 (7)
H6O0.267 (6)0.324 (3)0.1898 (11)0.092 (14)*
C170.3001 (5)0.4453 (2)0.21715 (8)0.0549 (9)
H17A0.42370.44610.20820.066*
H17B0.30670.45800.24230.066*
C180.1995 (4)0.5355 (2)0.20099 (7)0.0406 (7)
H18A0.24890.60320.20950.049*
H18B0.07260.53190.20800.049*
N20.2115 (4)0.5327 (2)0.16204 (6)0.0379 (6)
H2A0.145 (4)0.473 (3)0.1534 (8)0.059 (9)*
H2B0.168 (5)0.600 (3)0.1536 (9)0.070 (11)*
H2C0.336 (6)0.527 (3)0.1547 (10)0.084 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (11)0.0429 (11)0.0287 (10)0.0014 (9)0.0091 (9)0.0037 (7)
O20.0548 (13)0.0513 (12)0.0405 (11)0.0195 (11)0.0082 (10)0.0194 (9)
O30.0385 (11)0.0364 (10)0.0383 (10)0.0059 (9)0.0008 (8)0.0135 (8)
O40.0477 (12)0.0380 (10)0.0294 (9)0.0072 (9)0.0068 (8)0.0062 (7)
C10.0265 (13)0.0271 (12)0.0257 (12)0.0037 (10)0.0016 (10)0.0020 (9)
C20.0346 (14)0.0258 (12)0.0353 (14)0.0048 (11)0.0031 (11)0.0032 (10)
C30.0348 (14)0.0314 (13)0.0267 (12)0.0051 (11)0.0069 (11)0.0004 (10)
C40.0216 (12)0.0245 (12)0.0258 (12)0.0041 (10)0.0017 (9)0.0005 (9)
C50.0357 (15)0.0326 (13)0.0329 (14)0.0107 (12)0.0011 (11)0.0033 (10)
C60.0370 (15)0.0385 (14)0.0262 (13)0.0105 (12)0.0057 (11)0.0009 (10)
C70.0240 (13)0.0253 (12)0.0277 (13)0.0019 (10)0.0008 (10)0.0018 (9)
C80.0359 (15)0.0332 (14)0.0295 (13)0.0116 (12)0.0010 (11)0.0027 (10)
C90.0363 (15)0.0376 (14)0.0234 (12)0.0064 (12)0.0019 (11)0.0001 (10)
C100.0268 (13)0.0259 (12)0.0263 (12)0.0035 (10)0.0032 (10)0.0023 (9)
C110.0393 (16)0.0327 (14)0.0367 (14)0.0104 (12)0.0026 (12)0.0099 (11)
C120.0406 (16)0.0403 (15)0.0312 (14)0.0124 (13)0.0116 (12)0.0052 (11)
C130.0352 (15)0.0264 (12)0.0317 (13)0.0035 (11)0.0037 (11)0.0039 (10)
C140.0327 (14)0.0250 (12)0.0293 (13)0.0057 (11)0.0042 (11)0.0024 (10)
O50.0747 (16)0.0416 (12)0.0399 (12)0.0011 (11)0.0125 (11)0.0027 (9)
C150.062 (2)0.0510 (19)0.0379 (16)0.0007 (16)0.0091 (15)0.0050 (13)
C160.062 (2)0.0407 (16)0.0413 (16)0.0055 (15)0.0064 (15)0.0114 (12)
N10.0397 (15)0.0317 (13)0.0445 (14)0.0062 (12)0.0061 (12)0.0016 (11)
O60.108 (2)0.0403 (12)0.0376 (12)0.0153 (13)0.0034 (13)0.0029 (9)
C170.082 (3)0.0512 (19)0.0319 (15)0.0059 (18)0.0003 (16)0.0017 (13)
C180.0464 (18)0.0347 (15)0.0407 (15)0.0025 (13)0.0095 (13)0.0067 (11)
N20.0474 (16)0.0274 (12)0.0389 (13)0.0002 (11)0.0018 (12)0.0014 (10)
Geometric parameters (Å, º) top
O1—C131.268 (3)C11—H110.9300
O2—C131.248 (3)C12—H120.9300
O3—C141.264 (3)O5—C151.411 (4)
O4—C141.261 (3)O5—H5O0.87 (4)
C1—C61.381 (3)C15—C161.483 (4)
C1—C21.381 (3)C15—H15A0.9700
C1—C131.504 (3)C15—H15B0.9700
C2—C31.378 (3)C16—N11.474 (4)
C2—H20.9300C16—H16A0.9700
C3—C41.391 (3)C16—H16B0.9700
C3—H30.9300N1—H1A0.96 (4)
C4—C51.390 (3)N1—H1B0.94 (4)
C4—C71.492 (3)N1—H1C0.90 (4)
C5—C61.381 (3)O6—C171.384 (4)
C5—H50.9300O6—H6O0.92 (4)
C6—H60.9300C17—C181.475 (4)
C7—C121.390 (3)C17—H17A0.9700
C7—C81.391 (3)C17—H17B0.9700
C8—C91.384 (3)C18—N21.486 (4)
C8—H80.9300C18—H18A0.9700
C9—C101.383 (3)C18—H18B0.9700
C9—H90.9300N2—H2A0.95 (3)
C10—C111.378 (3)N2—H2B0.95 (4)
C10—C141.505 (3)N2—H2C0.95 (4)
C11—C121.386 (3)
C6—C1—C2117.9 (2)O4—C14—C10118.9 (2)
C6—C1—C13122.5 (2)O3—C14—C10117.5 (2)
C2—C1—C13119.5 (2)C15—O5—H5O112 (3)
C3—C2—C1121.2 (2)O5—C15—C16113.1 (3)
C3—C2—H2119.4O5—C15—H15A109.0
C1—C2—H2119.4C16—C15—H15A109.0
C2—C3—C4121.4 (2)O5—C15—H15B109.0
C2—C3—H3119.3C16—C15—H15B109.0
C4—C3—H3119.3H15A—C15—H15B107.8
C5—C4—C3116.9 (2)N1—C16—C15112.0 (2)
C5—C4—C7121.8 (2)N1—C16—H16A109.2
C3—C4—C7121.3 (2)C15—C16—H16A109.2
C6—C5—C4121.5 (2)N1—C16—H16B109.2
C6—C5—H5119.3C15—C16—H16B109.2
C4—C5—H5119.3H16A—C16—H16B107.9
C1—C6—C5121.0 (2)C16—N1—H1A114 (2)
C1—C6—H6119.5C16—N1—H1B111 (2)
C5—C6—H6119.5H1A—N1—H1B105 (3)
C12—C7—C8116.9 (2)C16—N1—H1C111 (2)
C12—C7—C4122.1 (2)H1A—N1—H1C111 (3)
C8—C7—C4120.9 (2)H1B—N1—H1C104 (3)
C9—C8—C7121.4 (2)C17—O6—H6O105 (3)
C9—C8—H8119.3O6—C17—C18116.0 (3)
C7—C8—H8119.3O6—C17—H17A108.3
C10—C9—C8121.0 (2)C18—C17—H17A108.3
C10—C9—H9119.5O6—C17—H17B108.3
C8—C9—H9119.5C18—C17—H17B108.3
C11—C10—C9118.1 (2)H17A—C17—H17B107.4
C11—C10—C14120.7 (2)C17—C18—N2111.6 (2)
C9—C10—C14121.2 (2)C17—C18—H18A109.3
C10—C11—C12121.0 (2)N2—C18—H18A109.3
C10—C11—H11119.5C17—C18—H18B109.3
C12—C11—H11119.5N2—C18—H18B109.3
C11—C12—C7121.5 (2)H18A—C18—H18B108.0
C11—C12—H12119.2C18—N2—H2A109 (2)
C7—C12—H12119.2C18—N2—H2B107 (2)
O2—C13—O1123.8 (2)H2A—N2—H2B113 (3)
O2—C13—C1117.3 (2)C18—N2—H2C110 (2)
O1—C13—C1118.8 (2)H2A—N2—H2C109 (3)
O4—C14—O3123.6 (2)H2B—N2—H2C107 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O10.87 (4)1.94 (4)2.793 (3)165 (4)
N1—H1A···O20.96 (4)1.76 (4)2.704 (3)169 (3)
N1—H1B···O3i0.94 (4)1.87 (4)2.807 (3)180 (4)
N1—H1C···O1ii0.90 (4)2.09 (4)2.892 (3)149 (3)
O6—H6O···O40.92 (4)1.89 (4)2.778 (3)164 (4)
N2—H2A···O30.95 (3)1.82 (4)2.759 (3)170 (3)
N2—H2B···O4iii0.95 (4)2.00 (4)2.854 (3)149 (3)
N2—H2C···O1iv0.95 (4)1.91 (4)2.866 (3)174 (4)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula2C2H8NO+·C14H8O42
Mr364.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.3410 (7), 12.4094 (13), 38.074 (4)
V3)3468.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14999, 3380, 2606
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.173, 1.08
No. of reflections3380
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O10.87 (4)1.94 (4)2.793 (3)165 (4)
N1—H1A···O20.96 (4)1.76 (4)2.704 (3)169 (3)
N1—H1B···O3i0.94 (4)1.87 (4)2.807 (3)180 (4)
N1—H1C···O1ii0.90 (4)2.09 (4)2.892 (3)149 (3)
O6—H6O···O40.92 (4)1.89 (4)2.778 (3)164 (4)
N2—H2A···O30.95 (3)1.82 (4)2.759 (3)170 (3)
N2—H2B···O4iii0.95 (4)2.00 (4)2.854 (3)149 (3)
N2—H2C···O1iv0.95 (4)1.91 (4)2.866 (3)174 (4)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573  CrossRef CAS Google Scholar
First citationBhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolman, K. T., Martin, S. M., Parker, D. P. & Ward, M. D. (2001). J. Am. Chem. Soc. 123, 4421–4431.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPlaut, D. J., Lund, K. M. & Ward, M. D. (2000). Chem. Commun. pp. 769–770.  Web of Science CSD CrossRef Google Scholar
First citationRanganathan, A., Pedireddi, V. R. & Rao, C. N. R. (1999). J. Am. Chem. Soc. 121, 1752–1753.  Web of Science CSD CrossRef CAS Google Scholar
First citationRussell, V. A., Evans, C. C., Li, W. J. & Ward, M. D. (1997). Science, 276, 575–579.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc. 120, 5887–5894.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-L. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 617–622.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds