organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl (cyclo­pentyl­amido)­phospho­nate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: fahimeh_sabbaghi@yahoo.com

(Received 30 March 2011; accepted 5 May 2011; online 11 May 2011)

In the title mol­ecule, C17H20NO3P, the P atom is bonded in a distorted tetra­hedral environment. The dihedral angle between the two phenyl rings is 23.52 (10)°. The phosphoryl and N—H groups are anti with respect to one another. The –CH2–CH2–CH2–CH2– sequence of atoms in the cyclo­pentyl ring is disordered over two sets of sites with refined occupancies of 0.574 (10) and 0.426 (10). In the crystal, mol­ecules are linked via N—H⋯O=P hydrogen bonds to form extended chains along [010].

Related literature

For a related structure, see: Pourayoubi et al. (2011[Pourayoubi, M., Zargaran, P., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. E67, o5.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20NO3P

  • Mr = 317.31

  • Monoclinic, P 21 /c

  • a = 18.0095 (4) Å

  • b = 5.3471 (1) Å

  • c = 17.9387 (4) Å

  • β = 109.731 (1)°

  • V = 1626.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 296 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.747

  • 139394 measured reflections

  • 3531 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.08

  • 3531 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯O1i 0.790 (19) 2.23 (2) 3.0039 (17) 167.7 (19)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

We have already studied the crystal structure of a diphenyl(amido)phosphonate, (C6H5O)2P(O)(NHCH2(2-ClC6H4) (Pourayoubi et al., 2011). Here, we report the synthesis and crystal structure of title compound.

The PO, P—O and P—N bond lengths are standard for (amido)phosphonate compounds. The P atom has a distorted tetrahedral configuration (Fig. 1) with the bond angles in the range of 99.72 (6)° [O2–P–O3] to 115.93 (6)° [O1–P–O2]. The phosphoryl group and the N–H unit are in an anti orientation with respect to each other which allows adjacent molecules to form extended chains along [010] via N—H···O(P) hydrogen bonds (Table 1).

Related literature top

For a related structure, see: Pourayoubi et al. (2011).

Experimental top

To a solution of (C6H5O)2P(O)Cl in chloroform, a solution of cyclopentylamine (1:2 mole ratio) in chloroform was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with distilled water. Single crystals were obtained from a solution of the title compound in CH3OH after slow evaporation at room temperature.

Refinement top

The nitrogen bonded hydrogen atom was found in a differnce Fourier map and allowed to refine while all other hydrogen atoms were placed in calculated positions with C–H = 0.93-0.98Å and with Uiso(H) = 1.2Ueq(C). The –CH2–CH2–CH2–CH2– sequence of atoms in the cyclopentyl ring are disordered over two sets of sites with refined occupancies 0.574 (10) and 0.426 (10).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.
{[(cyclopentylamino)(phenoxy)phosphoryl]oxy}benzene top
Crystal data top
C17H20NO3PF(000) = 672
Mr = 317.31Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9100 reflections
a = 18.0095 (4) Åθ = 2.3–32.9°
b = 5.3471 (1) ŵ = 0.18 mm1
c = 17.9387 (4) ÅT = 296 K
β = 109.731 (1)°Irregular, colorless
V = 1626.05 (6) Å30.5 × 0.4 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube3180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2323
Tmin = 0.709, Tmax = 0.747k = 66
139394 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.5717P]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max = 0.04
240 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H20NO3PV = 1626.05 (6) Å3
Mr = 317.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0095 (4) ŵ = 0.18 mm1
b = 5.3471 (1) ÅT = 296 K
c = 17.9387 (4) Å0.5 × 0.4 × 0.2 mm
β = 109.731 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3180 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.747Rint = 0.021
139394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
3531 reflectionsΔρmin = 0.28 e Å3
240 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.11088 (11)0.7234 (4)0.15643 (15)0.0736 (6)
H1A0.11630.58340.19310.088*0.574 (10)
C20.0736 (5)0.9286 (12)0.1911 (5)0.108 (3)0.574 (10)
H2A0.08960.91120.24820.130*0.574 (10)
H2B0.09001.09190.17900.130*0.574 (10)
C30.0542 (3)0.6434 (17)0.0887 (4)0.105 (3)0.574 (10)
H3A0.06220.46850.07930.125*0.574 (10)
H3B0.05620.74000.04370.125*0.574 (10)
C40.0107 (7)0.901 (2)0.1558 (11)0.114 (5)0.574 (10)
H4A0.03391.05110.12670.136*0.574 (10)
H4B0.03440.87140.19620.136*0.574 (10)
C50.0237 (3)0.6791 (19)0.1003 (5)0.111 (2)0.574 (10)
H5A0.03810.53160.12380.133*0.574 (10)
H5B0.06500.71390.05030.133*0.574 (10)
H1AA0.10160.54260.15500.088*0.426 (10)
C2A0.0824 (7)0.830 (4)0.2078 (6)0.164 (7)0.426 (10)
H2A10.10201.00010.21920.197*0.426 (10)
H2A20.09780.73670.25700.197*0.426 (10)
C3A0.0515 (4)0.856 (3)0.0735 (5)0.121 (4)0.426 (10)
H3A10.06941.02210.06640.146*0.426 (10)
H3A20.04770.75480.02740.146*0.426 (10)
C4A0.0101 (9)0.830 (4)0.1673 (13)0.151 (8)0.426 (10)
H4A10.03200.67230.17660.181*0.426 (10)
H4A20.03350.96420.18820.181*0.426 (10)
C5A0.0243 (6)0.864 (3)0.0878 (8)0.131 (4)0.426 (10)
H5A10.04971.02430.07110.157*0.426 (10)
H5A20.05900.73360.05770.157*0.426 (10)
C60.38086 (8)0.6852 (3)0.24407 (8)0.0428 (3)
C70.37482 (10)0.8825 (3)0.29063 (10)0.0530 (4)
H70.33701.00620.27060.064*
C80.42607 (11)0.8939 (4)0.36780 (11)0.0642 (4)
H80.42251.02520.40040.077*
C90.48253 (11)0.7112 (4)0.39663 (11)0.0657 (5)
H90.51670.71890.44870.079*
C100.48839 (10)0.5181 (4)0.34858 (12)0.0637 (4)
H100.52710.39680.36800.076*
C110.43704 (9)0.5027 (3)0.27138 (10)0.0534 (4)
H110.44050.37140.23870.064*
C120.29427 (10)0.1941 (3)0.02869 (10)0.0553 (4)
H120.31330.16040.08270.066*
C130.31354 (11)0.0410 (4)0.02407 (12)0.0640 (5)
H130.34580.09720.00520.077*
C140.28593 (12)0.0892 (4)0.10368 (12)0.0708 (5)
H140.29930.01530.13860.085*
C150.23842 (12)0.2924 (4)0.13150 (10)0.0706 (5)
H150.21940.32500.18560.085*
C160.21843 (10)0.4497 (4)0.08008 (9)0.0569 (4)
H160.18660.58860.09910.068*
C170.24637 (9)0.3976 (3)0.00026 (8)0.0452 (3)
N0.19186 (8)0.7736 (3)0.16096 (8)0.0493 (3)
O10.23902 (7)0.31497 (19)0.17324 (6)0.0509 (3)
O20.33107 (6)0.6759 (2)0.16438 (6)0.0469 (3)
O30.22198 (7)0.5640 (2)0.04688 (6)0.0529 (3)
P0.24508 (2)0.56130 (6)0.14026 (2)0.04116 (13)
H0.2031 (11)0.915 (4)0.1566 (11)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (10)0.0536 (10)0.1190 (17)0.0082 (8)0.0356 (11)0.0161 (11)
C20.072 (4)0.092 (4)0.175 (8)0.012 (2)0.060 (5)0.073 (4)
C30.058 (2)0.141 (5)0.107 (4)0.013 (3)0.019 (2)0.056 (4)
C40.072 (5)0.107 (5)0.170 (12)0.018 (4)0.052 (6)0.029 (5)
C50.050 (2)0.147 (6)0.129 (5)0.012 (3)0.022 (3)0.027 (5)
C1A0.0531 (10)0.0536 (10)0.1190 (17)0.0082 (8)0.0356 (11)0.0161 (11)
C2A0.061 (4)0.38 (2)0.062 (3)0.018 (9)0.034 (3)0.024 (8)
C3A0.061 (3)0.210 (12)0.087 (4)0.012 (5)0.018 (3)0.046 (6)
C4A0.060 (7)0.28 (2)0.128 (10)0.052 (9)0.058 (7)0.058 (13)
C5A0.075 (5)0.165 (11)0.148 (8)0.014 (6)0.032 (5)0.035 (9)
C60.0413 (7)0.0400 (7)0.0492 (7)0.0041 (6)0.0180 (6)0.0033 (6)
C70.0535 (8)0.0436 (8)0.0596 (9)0.0028 (7)0.0161 (7)0.0015 (7)
C80.0679 (11)0.0583 (10)0.0613 (10)0.0034 (8)0.0153 (8)0.0124 (8)
C90.0566 (10)0.0737 (12)0.0567 (9)0.0057 (9)0.0059 (8)0.0023 (9)
C100.0478 (8)0.0617 (10)0.0736 (11)0.0073 (8)0.0101 (8)0.0083 (9)
C110.0486 (8)0.0469 (8)0.0650 (10)0.0025 (7)0.0198 (7)0.0024 (7)
C120.0640 (9)0.0521 (9)0.0489 (8)0.0033 (7)0.0180 (7)0.0015 (7)
C130.0666 (11)0.0576 (10)0.0727 (11)0.0035 (8)0.0300 (9)0.0089 (8)
C140.0743 (12)0.0815 (14)0.0667 (11)0.0092 (10)0.0370 (10)0.0217 (10)
C150.0744 (12)0.0967 (15)0.0435 (8)0.0090 (11)0.0238 (8)0.0067 (9)
C160.0545 (9)0.0676 (11)0.0463 (8)0.0004 (8)0.0138 (7)0.0055 (7)
C170.0462 (7)0.0477 (8)0.0410 (7)0.0069 (6)0.0138 (6)0.0034 (6)
N0.0497 (7)0.0374 (7)0.0636 (8)0.0043 (5)0.0227 (6)0.0056 (6)
O10.0638 (6)0.0359 (5)0.0532 (6)0.0033 (5)0.0199 (5)0.0019 (4)
O20.0486 (6)0.0486 (6)0.0459 (5)0.0031 (4)0.0190 (4)0.0027 (4)
O30.0659 (7)0.0478 (6)0.0416 (5)0.0109 (5)0.0136 (5)0.0021 (4)
P0.0474 (2)0.0344 (2)0.0416 (2)0.00097 (14)0.01477 (15)0.00036 (13)
Geometric parameters (Å, º) top
C1—C31.365 (5)C6—O21.4088 (17)
C1—N1.458 (2)C7—C81.382 (2)
C1—C21.524 (6)C7—H70.9300
C1—H1A0.9800C8—C91.378 (3)
C2—C41.442 (16)C8—H80.9300
C2—H2A0.9700C9—C101.372 (3)
C2—H2B0.9700C9—H90.9300
C3—C51.499 (7)C10—C111.384 (2)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—H110.9300
C4—C51.516 (16)C12—C171.377 (2)
C4—H4A0.9700C12—C131.381 (2)
C4—H4B0.9700C12—H120.9300
C5—H5A0.9700C13—C141.369 (3)
C5—H5B0.9700C13—H130.9300
C2A—C4A1.577 (19)C14—C151.369 (3)
C2A—H2A10.9700C14—H140.9300
C2A—H2A20.9700C15—C161.383 (3)
C3A—C5A1.472 (12)C15—H150.9300
C3A—H3A10.9700C16—C171.376 (2)
C3A—H3A20.9700C16—H160.9300
C4A—C5A1.37 (3)C17—O31.3968 (18)
C4A—H4A10.9700N—P1.6078 (14)
C4A—H4A20.9700N—H0.793 (19)
C5A—H5A10.9700O1—P1.4630 (11)
C5A—H5A20.9700O2—P1.5839 (10)
C6—C111.372 (2)O3—P1.5838 (11)
C6—C71.373 (2)
C3—C1—N122.8 (3)C11—C6—C7122.00 (15)
C3—C1—C2106.8 (4)C11—C6—O2118.51 (13)
N—C1—C2114.5 (3)C7—C6—O2119.39 (13)
C3—C1—H1A103.5C6—C7—C8118.69 (15)
N—C1—H1A103.5C6—C7—H7120.7
C2—C1—H1A103.5C8—C7—H7120.7
C4—C2—C1106.9 (6)C9—C8—C7120.23 (17)
C4—C2—H2A110.3C9—C8—H8119.9
C1—C2—H2A110.4C7—C8—H8119.9
C4—C2—H2B110.3C10—C9—C8120.07 (17)
C1—C2—H2B110.3C10—C9—H9120.0
H2A—C2—H2B108.6C8—C9—H9120.0
C1—C3—C5106.9 (4)C9—C10—C11120.43 (17)
C1—C3—H3A110.3C9—C10—H10119.8
C5—C3—H3A110.3C11—C10—H10119.8
C1—C3—H3B110.3C6—C11—C10118.57 (16)
C5—C3—H3B110.3C6—C11—H11120.7
H3A—C3—H3B108.6C10—C11—H11120.7
C2—C4—C5105.9 (6)C17—C12—C13118.71 (16)
C2—C4—H4A110.6C17—C12—H12120.6
C5—C4—H4A110.5C13—C12—H12120.6
C2—C4—H4B110.5C14—C13—C12121.09 (18)
C5—C4—H4B110.6C14—C13—H13119.5
H4A—C4—H4B108.7C12—C13—H13119.5
C3—C5—C4104.2 (6)C13—C14—C15119.48 (17)
C3—C5—H5A110.9C13—C14—H14120.3
C4—C5—H5A110.9C15—C14—H14120.3
C3—C5—H5B110.9C14—C15—C16120.75 (17)
C4—C5—H5B110.9C14—C15—H15119.6
H5A—C5—H5B108.9C16—C15—H15119.6
C4A—C2A—H2A1110.5C17—C16—C15118.99 (18)
C4A—C2A—H2A2110.6C17—C16—H16120.5
H2A1—C2A—H2A2108.7C15—C16—H16120.5
C5A—C3A—H3A1111.4C12—C17—C16120.99 (15)
C5A—C3A—H3A2111.3C12—C17—O3124.08 (13)
H3A1—C3A—H3A2109.2C16—C17—O3114.93 (14)
C5A—C4A—C2A106.1 (12)C1—N—P121.36 (12)
C5A—C4A—H4A1110.5C1—N—H117.0 (14)
C2A—C4A—H4A1110.5P—N—H117.3 (14)
C5A—C4A—H4A2110.5C6—O2—P121.30 (8)
C2A—C4A—H4A2110.5C17—O3—P127.62 (10)
H4A1—C4A—H4A2108.7O1—P—O2115.93 (6)
C4A—C5A—C3A108.6 (9)O1—P—O3114.03 (6)
C4A—C5A—H5A1110.0O2—P—O399.72 (6)
C3A—C5A—H5A1109.9O1—P—N114.24 (7)
C4A—C5A—H5A2110.0O2—P—N105.55 (6)
C3A—C5A—H5A2110.0O3—P—N105.88 (7)
H5A1—C5A—H5A2108.4
C3—C1—C2—C418.7 (10)C13—C12—C17—C160.5 (2)
N—C1—C2—C4158.1 (8)C13—C12—C17—O3179.15 (15)
N—C1—C3—C5165.1 (4)C15—C16—C17—C120.8 (3)
C2—C1—C3—C529.9 (7)C15—C16—C17—O3178.89 (15)
C1—C2—C4—C50.3 (13)C3—C1—N—P57.8 (5)
C1—C3—C5—C429.8 (11)C2—C1—N—P170.1 (4)
C2—C4—C5—C317.2 (14)C11—C6—O2—P98.41 (14)
C2A—C4A—C5A—C3A7 (2)C7—C6—O2—P85.20 (15)
C11—C6—C7—C81.3 (2)C12—C17—O3—P2.0 (2)
O2—C6—C7—C8177.58 (15)C16—C17—O3—P178.33 (11)
C6—C7—C8—C90.7 (3)C6—O2—P—O149.72 (12)
C7—C8—C9—C100.4 (3)C6—O2—P—O3172.58 (10)
C8—C9—C10—C111.1 (3)C6—O2—P—N77.80 (12)
C7—C6—C11—C100.7 (2)C17—O3—P—O146.75 (15)
O2—C6—C11—C10177.00 (14)C17—O3—P—O277.45 (13)
C9—C10—C11—C60.5 (3)C17—O3—P—N173.19 (12)
C17—C12—C13—C140.1 (3)C1—N—P—O143.33 (18)
C12—C13—C14—C150.0 (3)C1—N—P—O2171.87 (15)
C13—C14—C15—C160.3 (3)C1—N—P—O382.99 (16)
C14—C15—C16—C170.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O1i0.790 (19)2.23 (2)3.0039 (17)167.7 (19)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H20NO3P
Mr317.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.0095 (4), 5.3471 (1), 17.9387 (4)
β (°) 109.731 (1)
V3)1626.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.709, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
139394, 3531, 3180
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.08
No. of reflections3531
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O1i0.790 (19)2.23 (2)3.0039 (17)167.7 (19)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Zargaran, P., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. E67, o5.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds