organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1421-o1422

4-{(4-Chloro­phen­yl)[4-(4-methyl­phen­yl)-1,2,3-selena­diazol-5-yl]meth­yl}-4,5,6,7-tetra­hydro-1,2,3-benzoselena­diazole

aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, bDepartment of Bioinformatics, Alagappa University, Karaikudi 630 003, India, cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India, dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and eDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: jjkanthan@gmail.com

(Received 5 April 2011; accepted 9 May 2011; online 14 May 2011)

In the title compound, C22H19ClN4Se2, the mean plane of the non-fused selenadiazole ring forms dihedral angles of 54.20 (16)° and 70.48 (11)°, respectively, with the essentially planar [maximum deviations of 0.025 (5) and 0.009 (2) Å, respectively] methyl­phenyl and chloro­phenyl substituents. The tetra­hydro-1,2,3-benzoselenadiazole group is disordered over two sets of sites with a refined occupancy ratio of 0.802 (5):0.198 (5). In the crystal, weak inter­molecular C—H⋯N inter­actions are observed.

Related literature

For biological applications of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.]); El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encıo, I., Palop, J. A. & Sanmartın, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & &Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]). For the structures of mono and bis-1,2,3-selenadiazole derivatives, see: Marx et al. (2008[Marx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008). Acta Cryst. E64, o729.]); Boag et al. (2010[Boag, N. M., Jackson, A. D., Lickiss, P. D., Pilkington, R. D. & Redhouse, A. D. (2010). Acta Cryst. E66, m241.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19ClN4Se2

  • Mr = 532.78

  • Monoclinic, P 21 /c

  • a = 9.7226 (18) Å

  • b = 12.969 (4) Å

  • c = 17.690 (3) Å

  • β = 100.959 (19)°

  • V = 2189.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.52 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.516, Tmax = 1.000

  • 8795 measured reflections

  • 3849 independent reflections

  • 2590 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.04

  • 3849 reflections

  • 255 parameters

  • 293 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6A⋯N2Ai 0.98 2.57 3.517 (16) 164
C10—H10⋯N4ii 0.93 2.61 3.467 (7) 153
C12—H12⋯N3iii 0.93 2.61 3.470 (7) 153
Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Selenium containing compounds like 1,2,3-selenadiazole are of increasing interest because of their unique chemical properties and have several important biological applications such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al.,1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) activities. In view of the growing importances of selenium containing compounds, we present herein the single-crystal structure of the title compound (I).

Some mono and bis-1,2,3-selenadiazole derivatives are already reported in the literature (Marx et al., 2008; Boag et al., 2010). The molecular structure of the title compound is shown in Fig. 1. The puckering analysis (Cremer & Pople, 1975) for the atoms C1A/C2A/C3A/C4A/C5A/C6A (belonging to the major component of disorder) of the 4,5,6,7-tetrahydrobenzo[d][1,2,3]selenadiazole group in (I) adopt an envelope conformation (E form) with puckering parameters of Q = 0.536 (8) Å, θ = 56.1 (8)° and Φ = 239.0 (10)°. The tetrahydro-1,2,3-benzoselenadiazole group is disordered with the refined site-occupancy ratios 0.802 (5):0.198 (5). The hetrocyclic ring (Se2/C14/C15/N3/N4) makes dihedral angles of 54.20 (16)° and 70.48 (11)°, respectively with the essentially planar atoms C16-C22 [maximum deviation 0.025 (5) Å for C16] and atoms C8-C13/Cl1 [maximum deviation of 0.009 (2)Å for Cl1]. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···N interactions.

Related literature top

For biological applications of 1,2,3-selenadiazole derivatives, see: Kuroda et al. (2001); El-Bahaie et al. (1990); El-Kashef et al. (1986); Plano et al. (2010); Padmavathi et al. (2002). For the structures of mono and bis-1,2,3-selenadiazole derivatives, see: Marx et al. (2008); Boag et al. (2010). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-[1-(4-chloro-phenyl)-3-(4-methylphenyl)-3-oxopropyl]-1-cyclohexanone (1 mmol) and semicarbazide hydro-chloride (2.5 mmol) in ethanol (10 mL) was heated under reflux on a water bath for 3 h. After completion of the reaction as evident from TLC, the mixture was poured into ice-water (50 ml) and the resulting semicarbazone solid was filtered off. Then, a mixture of semicarbazone and SeO2 (3 mmol) in tetrahydrofuran (THF) (10 ml) were refluxed on a water bath for 30 min. After completion of the reaction as monitored by TLC, the reaction mixture was filtered to remove selenium powder, the filtrate was concentrated under vacuum, and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (95:5; v/v) as eluent to afford the pure product. X-ray quality crystals were grown from a solution of the title compound in a 3:1 mixture of dichloromethane:ethylacetate in a partially closed 5ml glass vial over 7-8 days.

Refinement top

All hydrogen atoms were placed in calculated positions, with C—H = 0.93 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C). The atoms of the tetrahydro-1,2,3-benzoselenadiazole group are disordered with the refined site-occupancy ratios 0.802 (5):0.198 (5). The DFIX, SIMU, DELU and EADP commands in SHELXL (Sheldrick, 2008) were used to model the disorder.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. The disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of (I) showing intermolecular interactions as dashed lines.
4-{(4-Chlorophenyl)[4-(4-methylphenyl)-1,2,3-selenadiazol-5-yl]methyl}-4,5,6,7- tetrahydro-1,2,3-benzoselenadiazole top
Crystal data top
C22H19ClN4Se2F(000) = 1056
Mr = 532.78Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2877 reflections
a = 9.7226 (18) Åθ = 2.7–29.4°
b = 12.969 (4) ŵ = 3.52 mm1
c = 17.690 (3) ÅT = 293 K
β = 100.959 (19)°Block, blue
V = 2189.9 (8) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3849 independent reflections
Radiation source: fine-focus sealed tube2590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1513
Tmin = 0.516, Tmax = 1.000l = 2021
8795 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.3633P]
where P = (Fo2 + 2Fc2)/3
3849 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.70 e Å3
293 restraintsΔρmin = 0.68 e Å3
Crystal data top
C22H19ClN4Se2V = 2189.9 (8) Å3
Mr = 532.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7226 (18) ŵ = 3.52 mm1
b = 12.969 (4) ÅT = 293 K
c = 17.690 (3) Å0.4 × 0.3 × 0.2 mm
β = 100.959 (19)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3849 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2590 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 1.000Rint = 0.041
8795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051293 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
3849 reflectionsΔρmin = 0.68 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se21.09476 (5)0.12061 (4)0.16057 (3)0.0585 (2)
Se1A0.8917 (3)0.22707 (11)0.19037 (8)0.0718 (5)0.802 (5)
N1A1.0459 (4)0.1859 (6)0.1174 (3)0.0651 (10)0.802 (5)
N2A1.0132 (5)0.1456 (10)0.0585 (4)0.0651 (10)0.802 (5)
C1A0.8710 (5)0.1372 (9)0.0608 (4)0.0550 (7)0.802 (5)
C2A0.7819 (4)0.1715 (6)0.1252 (2)0.0550 (7)0.802 (5)
C3A0.6210 (4)0.1768 (5)0.1395 (3)0.0550 (7)0.802 (5)
H3A10.58160.13860.18570.066*0.802 (5)
H3A20.59020.24780.14640.066*0.802 (5)
C4A0.5716 (6)0.1296 (5)0.0694 (3)0.0550 (7)0.802 (5)
H4A10.47900.10030.08620.066*0.802 (5)
H4A20.56370.18410.03300.066*0.802 (5)
C5A0.6695 (6)0.0453 (5)0.0280 (5)0.0550 (7)0.802 (5)
H5A10.62800.01500.01250.066*0.802 (5)
H5A20.68020.00870.06440.066*0.802 (5)
C6A0.8145 (7)0.0897 (9)0.0070 (3)0.0550 (7)0.802 (5)
H6A0.87610.03290.02840.066*0.802 (5)
Se1B0.9566 (8)0.2149 (5)0.1767 (3)0.0718 (5)0.198 (5)
N1B1.0899 (15)0.176 (3)0.0914 (11)0.0651 (10)0.198 (5)
N2B1.0313 (16)0.139 (5)0.0400 (17)0.0651 (10)0.198 (5)
C1B0.8867 (16)0.136 (3)0.0542 (15)0.0550 (7)0.198 (5)
C2B0.8184 (11)0.179 (2)0.1217 (9)0.0550 (7)0.198 (5)
C3B0.6665 (17)0.150 (2)0.1572 (10)0.0550 (7)0.198 (5)
H3B10.66360.08250.18110.066*0.198 (5)
H3B20.62650.19990.19610.066*0.198 (5)
C4B0.584 (2)0.1489 (19)0.0911 (12)0.0550 (7)0.198 (5)
H4B10.59220.21490.06470.066*0.198 (5)
H4B20.48560.13520.11070.066*0.198 (5)
C5B0.649 (2)0.063 (2)0.0358 (17)0.0550 (7)0.198 (5)
H5B10.59520.05590.00500.066*0.198 (5)
H5B20.64160.00220.06370.066*0.198 (5)
C6B0.803 (2)0.083 (3)0.0002 (14)0.0550 (7)0.198 (5)
H6B0.84950.01840.02030.066*0.198 (5)
C70.8116 (4)0.1691 (3)0.0701 (2)0.0381 (10)
H70.76250.22970.04510.046*
Cl10.46832 (17)0.03231 (15)0.30184 (9)0.0924 (6)
N31.1287 (4)0.3213 (4)0.1634 (2)0.0590 (11)
C80.7283 (4)0.1319 (4)0.1297 (2)0.0397 (11)
C140.9555 (4)0.2050 (4)0.1089 (2)0.0398 (11)
C150.9973 (4)0.3053 (4)0.1179 (2)0.0430 (11)
N41.1966 (4)0.2421 (4)0.1914 (3)0.0694 (13)
C120.6800 (5)0.0107 (4)0.2241 (3)0.0568 (13)
H120.70080.05010.25170.068*
C160.9173 (5)0.3976 (4)0.0856 (2)0.0431 (11)
C190.7582 (6)0.5702 (5)0.0261 (4)0.0690 (16)
C90.6174 (5)0.1898 (4)0.1437 (3)0.0525 (13)
H90.59600.25100.11660.063*
C110.5706 (5)0.0717 (5)0.2355 (3)0.0596 (15)
C100.5379 (5)0.1612 (5)0.1956 (3)0.0563 (14)
H100.46300.20160.20370.068*
C130.7581 (5)0.0413 (4)0.1711 (2)0.0507 (12)
H130.83250.00040.16290.061*
C170.8653 (6)0.4074 (4)0.0074 (3)0.0575 (14)
H170.88400.35610.02590.069*
C180.7867 (6)0.4917 (4)0.0218 (3)0.0696 (16)
H180.75210.49590.07450.084*
C210.8923 (6)0.4772 (4)0.1331 (3)0.0576 (13)
H210.92910.47410.18550.069*
C200.8137 (6)0.5610 (4)0.1034 (3)0.0709 (16)
H200.79750.61320.13670.085*
C220.6694 (7)0.6612 (6)0.0055 (4)0.115 (3)
H22A0.62220.68780.03330.173*
H22B0.60140.63990.04950.173*
H22C0.72800.71390.02060.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se20.0497 (3)0.0567 (4)0.0679 (4)0.0162 (3)0.0084 (3)0.0100 (3)
Se1A0.0962 (12)0.0770 (6)0.0489 (5)0.0015 (7)0.0308 (7)0.0137 (4)
N1A0.077 (2)0.060 (3)0.069 (4)0.018 (3)0.038 (2)0.015 (3)
N2A0.077 (2)0.060 (3)0.069 (4)0.018 (3)0.038 (2)0.015 (3)
C1A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C2A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C3A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C4A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C5A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C6A0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
Se1B0.0962 (12)0.0770 (6)0.0489 (5)0.0015 (7)0.0308 (7)0.0137 (4)
N1B0.077 (2)0.060 (3)0.069 (4)0.018 (3)0.038 (2)0.015 (3)
N2B0.077 (2)0.060 (3)0.069 (4)0.018 (3)0.038 (2)0.015 (3)
C1B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C2B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C3B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C4B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C5B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C6B0.0730 (15)0.0516 (16)0.0431 (13)0.0072 (14)0.0177 (12)0.0051 (10)
C70.041 (2)0.038 (3)0.035 (2)0.007 (2)0.009 (2)0.0016 (19)
Cl10.0783 (10)0.1362 (16)0.0753 (9)0.0163 (10)0.0468 (8)0.0029 (9)
N30.052 (2)0.059 (3)0.064 (3)0.003 (2)0.004 (2)0.001 (2)
C80.034 (2)0.047 (3)0.038 (2)0.004 (2)0.0054 (19)0.004 (2)
C140.043 (2)0.040 (3)0.039 (2)0.008 (2)0.014 (2)0.003 (2)
C150.036 (2)0.048 (3)0.045 (3)0.006 (2)0.010 (2)0.001 (2)
N40.045 (2)0.085 (4)0.076 (3)0.006 (3)0.006 (2)0.008 (3)
C120.052 (3)0.064 (4)0.056 (3)0.007 (3)0.014 (3)0.015 (3)
C160.041 (2)0.043 (3)0.048 (3)0.003 (2)0.013 (2)0.002 (2)
C190.060 (3)0.057 (4)0.094 (4)0.016 (3)0.027 (3)0.020 (3)
C90.042 (3)0.063 (4)0.052 (3)0.011 (3)0.007 (2)0.005 (2)
C110.042 (3)0.092 (5)0.047 (3)0.007 (3)0.014 (2)0.009 (3)
C100.038 (3)0.075 (4)0.057 (3)0.011 (3)0.011 (2)0.014 (3)
C130.044 (3)0.058 (3)0.053 (3)0.015 (3)0.017 (2)0.008 (2)
C170.070 (3)0.048 (3)0.055 (3)0.000 (3)0.014 (3)0.005 (2)
C180.079 (4)0.058 (4)0.065 (3)0.006 (4)0.003 (3)0.020 (3)
C210.068 (3)0.050 (3)0.059 (3)0.004 (3)0.025 (3)0.004 (3)
C200.085 (4)0.058 (4)0.082 (4)0.021 (3)0.046 (3)0.004 (3)
C220.107 (6)0.104 (6)0.135 (6)0.053 (5)0.021 (5)0.038 (5)
Geometric parameters (Å, º) top
Se2—C141.843 (4)C5B—H5B20.9700
Se2—N41.886 (5)C6B—C71.66 (4)
Se1A—C2A1.8585 (10)C6B—H6B0.9800
Se1A—N1A1.8605 (11)C7—C141.510 (6)
N1A—N2A1.2601 (10)C7—C81.526 (6)
N2A—C1A1.3790 (10)C7—H70.9800
C1A—C2A1.3688 (10)Cl1—C111.753 (5)
C1A—C6A1.5387 (10)N3—N41.270 (6)
C2A—C3A1.5385 (10)N3—C151.390 (6)
C3A—C4A1.5394 (10)C8—C91.375 (6)
C3A—H3A10.9700C8—C131.386 (6)
C3A—H3A20.9700C14—C151.363 (6)
C4A—C5A1.5396 (10)C15—C161.482 (6)
C4A—H4A10.9700C12—C111.371 (7)
C4A—H4A20.9700C12—C131.372 (6)
C5A—C6A1.5394 (10)C12—H120.9300
C5A—H5A10.9700C16—C211.381 (6)
C5A—H5A20.9700C16—C171.385 (6)
C6A—C71.523 (11)C19—C201.377 (8)
C6A—H6A0.9800C19—C181.387 (8)
Se1B—C2B1.8597 (11)C19—C221.506 (8)
Se1B—N1B1.8602 (11)C9—C101.360 (7)
N1B—N2B1.2600 (10)C9—H90.9300
N2B—C1B1.3798 (10)C11—C101.364 (7)
C1B—C2B1.3698 (10)C10—H100.9300
C1B—C6B1.5397 (10)C13—H130.9300
C2B—C3B1.5398 (11)C17—C181.377 (7)
C3B—C4B1.5399 (10)C17—H170.9300
C3B—H3B10.9700C18—H180.9300
C3B—H3B20.9700C21—C201.373 (7)
C4B—C5B1.5398 (10)C21—H210.9300
C4B—H4B10.9700C20—H200.9300
C4B—H4B20.9700C22—H22A0.9600
C5B—C6B1.5398 (11)C22—H22B0.9600
C5B—H5B10.9700C22—H22C0.9600
C14—Se2—N486.7 (2)C5B—C6B—C7109 (3)
C2A—Se1A—N1A86.59 (18)C1B—C6B—H6B110.6
N2A—N1A—Se1A113.4 (3)C5B—C6B—H6B110.6
N1A—N2A—C1A114.7 (4)C7—C6B—H6B110.6
C2A—C1A—N2A118.1 (4)C14—C7—C6A113.4 (4)
C2A—C1A—C6A121.0 (4)C14—C7—C8110.6 (3)
N2A—C1A—C6A120.9 (4)C6A—C7—C8112.3 (4)
C1A—C2A—C3A127.9 (3)C14—C7—C6B117.2 (8)
C1A—C2A—Se1A107.2 (3)C8—C7—C6B110.1 (7)
C3A—C2A—Se1A124.6 (3)C14—C7—H7106.7
C2A—C3A—C4A108.3 (3)C6A—C7—H7106.7
C2A—C3A—H3A1110.0C8—C7—H7106.7
C4A—C3A—H3A1110.0C6B—C7—H7104.9
C2A—C3A—H3A2110.0N4—N3—C15117.2 (4)
C4A—C3A—H3A2110.0C9—C8—C13117.4 (4)
H3A1—C3A—H3A2108.4C9—C8—C7119.3 (4)
C3A—C4A—C5A113.9 (5)C13—C8—C7123.3 (4)
C3A—C4A—H4A1108.8C15—C14—C7125.3 (4)
C5A—C4A—H4A1108.8C15—C14—Se2109.5 (3)
C3A—C4A—H4A2108.8C7—C14—Se2124.9 (3)
C5A—C4A—H4A2108.8C14—C15—N3115.6 (4)
H4A1—C4A—H4A2107.7C14—C15—C16127.1 (4)
C6A—C5A—C4A111.2 (5)N3—C15—C16117.4 (4)
C6A—C5A—H5A1109.4N3—N4—Se2111.0 (3)
C4A—C5A—H5A1109.4C11—C12—C13118.6 (5)
C6A—C5A—H5A2109.4C11—C12—H12120.7
C4A—C5A—H5A2109.4C13—C12—H12120.7
H5A1—C5A—H5A2108.0C21—C16—C17117.7 (5)
C7—C6A—C1A111.1 (8)C21—C16—C15120.7 (4)
C7—C6A—C5A113.9 (7)C17—C16—C15121.6 (4)
C1A—C6A—C5A105.8 (5)C20—C19—C18117.2 (5)
C7—C6A—H6A108.7C20—C19—C22121.8 (6)
C1A—C6A—H6A108.7C18—C19—C22121.0 (6)
C5A—C6A—H6A108.7C10—C9—C8122.6 (5)
C2B—Se1B—N1B88.3 (7)C10—C9—H9118.7
N2B—N1B—Se1B110.4 (11)C8—C9—H9118.7
N1B—N2B—C1B117.5 (14)C10—C11—C12121.7 (5)
C2B—C1B—N2B117.3 (12)C10—C11—Cl1119.2 (4)
C2B—C1B—C6B120.3 (12)C12—C11—Cl1119.0 (5)
N2B—C1B—C6B122.3 (14)C9—C10—C11118.4 (5)
C1B—C2B—C3B121.5 (15)C9—C10—H10120.8
C1B—C2B—Se1B106.1 (9)C11—C10—H10120.8
C3B—C2B—Se1B125.5 (11)C12—C13—C8121.2 (4)
C2B—C3B—C4B106.9 (12)C12—C13—H13119.4
C2B—C3B—H3B1110.3C8—C13—H13119.4
C4B—C3B—H3B1110.3C18—C17—C16121.3 (5)
C2B—C3B—H3B2110.3C18—C17—H17119.4
C4B—C3B—H3B2110.3C16—C17—H17119.4
H3B1—C3B—H3B2108.6C17—C18—C19121.0 (5)
C5B—C4B—C3B106.3 (15)C17—C18—H18119.5
C5B—C4B—H4B1110.5C19—C18—H18119.5
C3B—C4B—H4B1110.5C20—C21—C16120.6 (5)
C5B—C4B—H4B2110.5C20—C21—H21119.7
C3B—C4B—H4B2110.5C16—C21—H21119.7
H4B1—C4B—H4B2108.7C21—C20—C19122.2 (5)
C6B—C5B—C4B112.9 (16)C21—C20—H20118.9
C6B—C5B—H5B1109.0C19—C20—H20118.9
C4B—C5B—H5B1109.0C19—C22—H22A109.5
C6B—C5B—H5B2109.0C19—C22—H22B109.5
C4B—C5B—H5B2109.0H22A—C22—H22B109.5
H5B1—C5B—H5B2107.8C19—C22—H22C109.5
C1B—C6B—C5B114.0 (14)H22A—C22—H22C109.5
C1B—C6B—C7102 (3)H22B—C22—H22C109.5
C2A—Se1A—N1A—N2A2.8 (7)C5B—C6B—C7—C6A177 (17)
Se1A—N1A—N2A—C1A1.9 (13)C1B—C6B—C7—C8177.6 (12)
N1A—N2A—C1A—C2A0.5 (17)C5B—C6B—C7—C856.9 (16)
N1A—N2A—C1A—C6A179.9 (10)C14—C7—C8—C9109.2 (4)
N2A—C1A—C2A—C3A175.9 (10)C6A—C7—C8—C9123.1 (5)
C6A—C1A—C2A—C3A4.5 (16)C6B—C7—C8—C9119.7 (11)
N2A—C1A—C2A—Se1A2.6 (14)C14—C7—C8—C1371.1 (5)
C6A—C1A—C2A—Se1A177.8 (9)C6A—C7—C8—C1356.7 (6)
N1A—Se1A—C2A—C1A2.8 (7)C6B—C7—C8—C1360.0 (12)
N1A—Se1A—C2A—C3A176.3 (7)C6A—C7—C14—C15127.4 (5)
C1A—C2A—C3A—C4A3.4 (12)C8—C7—C14—C15105.5 (5)
Se1A—C2A—C3A—C4A175.6 (5)C6B—C7—C14—C15127.3 (10)
C2A—C3A—C4A—C5A29.7 (8)C6A—C7—C14—Se259.8 (5)
C3A—C4A—C5A—C6A64.0 (7)C8—C7—C14—Se267.3 (4)
C2A—C1A—C6A—C797.8 (10)C6B—C7—C14—Se259.9 (10)
N2A—C1A—C6A—C782.7 (14)N4—Se2—C14—C151.2 (3)
C2A—C1A—C6A—C5A26.3 (14)N4—Se2—C14—C7172.6 (4)
N2A—C1A—C6A—C5A153.3 (12)C7—C14—C15—N3172.5 (4)
C4A—C5A—C6A—C764.0 (7)Se2—C14—C15—N31.2 (5)
C4A—C5A—C6A—C1A58.3 (10)C7—C14—C15—C166.5 (7)
C2B—Se1B—N1B—N2B5 (3)Se2—C14—C15—C16179.8 (3)
Se1B—N1B—N2B—C1B2 (5)N4—N3—C15—C140.5 (6)
N1B—N2B—C1B—C2B3 (7)N4—N3—C15—C16179.6 (4)
N1B—N2B—C1B—C6B174 (4)C15—N3—N4—Se20.5 (5)
N2B—C1B—C2B—C3B158 (4)C14—Se2—N4—N31.0 (4)
C6B—C1B—C2B—C3B18 (6)C14—C15—C16—C21125.1 (5)
N2B—C1B—C2B—Se1B6 (5)N3—C15—C16—C2153.8 (6)
C6B—C1B—C2B—Se1B170 (4)C14—C15—C16—C1755.1 (7)
N1B—Se1B—C2B—C1B6 (3)N3—C15—C16—C17126.0 (5)
N1B—Se1B—C2B—C3B157 (3)C13—C8—C9—C100.2 (7)
C1B—C2B—C3B—C4B45 (4)C7—C8—C9—C10179.5 (4)
Se1B—C2B—C3B—C4B169 (2)C13—C12—C11—C100.1 (8)
C2B—C3B—C4B—C5B64 (2)C13—C12—C11—Cl1179.0 (4)
C3B—C4B—C5B—C6B63 (3)C8—C9—C10—C110.5 (7)
C2B—C1B—C6B—C5B12 (6)C12—C11—C10—C90.4 (8)
N2B—C1B—C6B—C5B164 (5)Cl1—C11—C10—C9179.3 (4)
C2B—C1B—C6B—C7105 (4)C11—C12—C13—C80.1 (7)
N2B—C1B—C6B—C779 (5)C9—C8—C13—C120.1 (7)
C4B—C5B—C6B—C1B36 (5)C7—C8—C13—C12179.8 (4)
C4B—C5B—C6B—C777 (2)C21—C16—C17—C182.6 (7)
C1A—C6A—C7—C1465.9 (6)C15—C16—C17—C18177.6 (5)
C5A—C6A—C7—C14174.8 (4)C16—C17—C18—C190.8 (9)
C1A—C6A—C7—C8167.9 (4)C20—C19—C18—C171.1 (9)
C5A—C6A—C7—C848.6 (7)C22—C19—C18—C17178.6 (6)
C1A—C6A—C7—C6B112 (16)C17—C16—C21—C202.6 (8)
C5A—C6A—C7—C6B7 (16)C15—C16—C21—C20177.6 (5)
C1B—C6B—C7—C1454.9 (18)C16—C21—C20—C190.8 (9)
C5B—C6B—C7—C14175.7 (10)C18—C19—C20—C211.1 (9)
C1B—C6B—C7—C6A57 (15)C22—C19—C20—C21178.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···N2Ai0.982.573.517 (16)164
C10—H10···N4ii0.932.613.467 (7)153
C12—H12···N3iii0.932.613.470 (7)153
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19ClN4Se2
Mr532.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7226 (18), 12.969 (4), 17.690 (3)
β (°) 100.959 (19)
V3)2189.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.52
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.516, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8795, 3849, 2590
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.04
No. of reflections3849
No. of parameters255
No. of restraints293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.68

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6A—H6A···N2Ai0.982.573.517 (16)164
C10—H10···N4ii0.932.613.467 (7)153
C12—H12···N3iii0.932.613.470 (7)153
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: krishstrucbio@gmail.com.

Acknowledgements

RK and JM thank the Centre for Bioinformatics (funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India), Pondicherry University and JJ thanks the Department of Organic Chemistry, Madurai Kamaraj University, for providing the facilities for the synthesis of the title compound, and the Department of Bioinformatics, Alagappa University for providing the computational facilities to carry out this research work. JJ also thanks Binoy Krishna Saha, Assistant Professor, Department of Chemistry, Pondicherry University, for providing the X-ray facility. JM also thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF).

References

First citationBoag, N. M., Jackson, A. D., Lickiss, P. D., Pilkington, R. D. & Redhouse, A. D. (2010). Acta Cryst. E66, m241.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6 166 054.  Google Scholar
First citationMarx, A., Saravanan, S., Muthusubramanian, S., Manivannan, V. & Rath, N. P. (2008). Acta Cryst. E64, o729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & &Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encıo, I., Palop, J. A. & Sanmartın, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1421-o1422
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds