metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(3-hy­dr­oxy­pyridine-κN)di­iodidoplatinum(II) di­methyl sulfoxide disolvate

aSydney Medical School, The University of Sydney, Cumberland Campus, 75 East Street, Lidcombe, NSW 1825, Australia, bDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan, and cInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: fazlul.huq@sydney.edu.au

(Received 6 April 2011; accepted 26 April 2011; online 7 May 2011)

In the title compound, [PtI2(C5H5NO)2]·2(CH3)2SO, the PtII ion lies on an inversion center and is coordinated in a slightly distorted square-planar environment by two trans iodide ligands and two pyridine N atoms. In the crystal, complex mol­ecules and solvent dimethyl sulfoxide mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the results of activity, cell uptake and DNA binding studies of some trans-planar platinum complexes, see: Farrell et al. (1992[Farrell, N., Kelland, L. R., Roberts, J. D. & Beusichem, M. V. (1992). Cancer Res. 52, 5065-5072.]); Bierbach et al. (1999[Bierbach, U., Qu, Y., Hambley, T.W., Peroutka, J., Nguyen, H.L., Doedee, M. & Farrell, N. (1999). Inorg. Chem. 38, 3535-3542.]); Huq et al. (2004[Huq, F., Yu, J. Q., Daghriri, H. & Beale, P. (2004). Inorg. Biochem. 98, 1261-1270.]); Daghriri et al. (2004[Daghriri, H., Huq, F. & Beale, P. (2004). Inorg. Biochem. 98, 1722-1733.]); Chowdhury et al. (2005[Chowdhury, A., Huq, F., Abdullah, A., Beale, P. & Fisher, K. (2005). Inorg. Biochem. 99, 1098-1112.]). For the structure of trans-dichloridoplatinum(II), see: Beusichem & Farrell (1992[Beusichem, N. V. & Farrell, N. (1992). Inorg. Chem. 31, 634-639.]).

[Scheme 1]

Experimental

Crystal data
  • [PtI2(C5H5NO)2]·2C2H6OS

  • Mr = 795.35

  • Triclinic, [P \overline 1]

  • a = 6.0870 (12) Å

  • b = 7.8070 (16) Å

  • c = 12.305 (3) Å

  • α = 76.52 (3)°

  • β = 82.95 (3)°

  • γ = 81.87 (3)°

  • V = 560.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 9.22 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.05 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.091, Tmax = 0.467

  • 3570 measured reflections

  • 3281 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 25.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.114

  • S = 1.07

  • 3281 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −2.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.77 2.583 (7) 173
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, attention is focused on platinum compounds that can bind to DNA differently than cisplatin with the idea that the different nature of binding with DNA may result into an altered spectrum of activity (Daghriri et al., 2004). One such class of compounds are trans- planaramineplatinum complexes that bind with DNA to form mainly interstrand bifunctional 1,2-Pt(GG) adduct whereas cisplatin and its analogues form mainly intrastrand 1,2-Pt(GG) and 1,2-Pt(AG) adducts (Huq et al., 2004). A number of trans-planaramineplatinum complexes have been prepared (Huq et al., 2004; Chowdhury et al., 2005; Beusichem & Farrell, 1992; Bierbach et al., 1999; Farrell et al., 1992). They have shown in vitro activity similar to cisplatin against various cancer cell lines. One of these compounds is trans-dichloro-bis(3-hydroxypyridine) platinum(II) (Huq et al., 2004). In the title compound the chloride ligands have been replaced by iodide ligands. The crystal structure contains discrete molecules in which PtII ions lie on inversion centers (Fig. 1). PtII ions are coordinated to two symmetry related 3-hydroxypyridine ligand molecules via the pyridine N atoms and by two iodide ligands in a trans mode. The 3-hydroxypyridine ligand is planar with an r.m.s. of 0.0060 (2) Å. The coordination plane Pt/N1/I1/N1i/I1i (Symmetry code: (i) -x+1, -y+1, -z+1) forms an angle of 72.8 (2)° with the ligand plane (N1/C2-C6/O1). In the crystal, complex molecules and solvent dimethyl sulfoxide molecules are linked by intermolecular O—H···O hydrogen bonds (Fig. 2).

Related literature top

For the results of activity, cell uptake and DNA binding studies of some trans-planar platinum complexes, see: Farrell et al. (1992); Bierbach et al. (1999); Huq et al. (2004); Daghriri et al. (2004); Chowdhury et al. (2005). For the structure of trans-dichlorobis(thiazole)platinum (II), see: Beusichem & Farrell (1992).

Experimental top

1.0 mmol (415 mg) of K2PtCl4 was dissolved in 10 ml of ml water and 12 mmol (2.0 g) of KI was added and stirred for 30 min. 2.0 mmol (192 mg) of 3-hydroxypyridine, dissolved in 5 ml of ml water by sonification, was added with stirring to the mixture that was kept in ice. The mixture was stirred at room temperature for about 24 h. The yellow precipitate of Pt(3-hydroxypyridine)2I2 was collected by filtration, washed with ice cold water and ethanol, then air-dried. The precipitate was dissolved in a 1:1 DMSO:water mixture on heating and left standing. Crystals were obtained after 15 days.

Refinement top

The hydroxy group was included in the refinemnt with O-H = 0.82Å and Uiso(H)= 1.2Ueq(O). H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C) or Uiso(H)=1.5Ueq(Cmethyl).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The labeled asymmetric unit and symmetry generated (-x+1, -y+1, -z+1) atoms of the complex molecule of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(I) top
Crystal data top
[PtI2(C5H5NO)2]·2C2H6OSZ = 1
Mr = 795.35F(000) = 368
Triclinic, P1Dx = 2.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0870 (12) ÅCell parameters from 25 reflections
b = 7.8070 (16) Åθ = 6–15°
c = 12.305 (3) ŵ = 9.22 mm1
α = 76.52 (3)°T = 293 K
β = 82.95 (3)°Plate, pale yellow
γ = 81.87 (3)°0.19 × 0.15 × 0.05 mm
V = 560.5 (2) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
2568 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.1°, θmin = 1.7°
profile data from ω/2θ scansh = 08
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1010
Tmin = 0.091, Tmax = 0.467l = 1717
3570 measured reflections3 standard reflections every 200 reflections
3281 independent reflections intensity decay: 25.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.7284P]
where P = (Fo2 + 2Fc2)/3
3281 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 2.75 e Å3
Crystal data top
[PtI2(C5H5NO)2]·2C2H6OSγ = 81.87 (3)°
Mr = 795.35V = 560.5 (2) Å3
Triclinic, P1Z = 1
a = 6.0870 (12) ÅMo Kα radiation
b = 7.8070 (16) ŵ = 9.22 mm1
c = 12.305 (3) ÅT = 293 K
α = 76.52 (3)°0.19 × 0.15 × 0.05 mm
β = 82.95 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
2568 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.027
Tmin = 0.091, Tmax = 0.4673 standard reflections every 200 reflections
3570 measured reflections intensity decay: 25.2%
3281 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 1.59 e Å3
3281 reflectionsΔρmin = 2.75 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.50000.50000.03310 (11)
I10.52440 (7)0.68468 (5)0.64805 (4)0.04702 (13)
S10.9980 (3)0.2348 (2)0.93997 (17)0.0497 (4)
N10.6905 (8)0.2937 (6)0.5856 (4)0.0358 (9)
O10.6176 (9)0.0245 (7)0.8443 (5)0.0581 (14)
H10.70520.09920.88050.087*
O21.1336 (10)0.2639 (7)1.0279 (5)0.0606 (14)
C20.6050 (10)0.1983 (8)0.6833 (5)0.0407 (12)
H20.45730.22930.70800.049*
C30.7252 (10)0.0565 (7)0.7490 (5)0.0385 (11)
C60.9025 (10)0.2500 (8)0.5501 (6)0.0425 (13)
H60.96290.31510.48260.051*
C40.9432 (11)0.0105 (8)0.7117 (6)0.0449 (13)
H41.02830.08570.75280.054*
C51.0354 (11)0.1105 (9)0.6109 (6)0.0470 (14)
H51.18350.08370.58520.056*
C111.0277 (16)0.4169 (11)0.8257 (7)0.063 (2)
H11A0.97490.52500.85000.095*
H11B0.94230.40730.76730.095*
H11C1.18190.41760.79780.095*
C120.7179 (15)0.2967 (17)0.9862 (10)0.087 (3)
H12A0.67640.21721.05550.130*
H12B0.62300.29110.93060.130*
H12C0.70200.41560.99760.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02968 (15)0.02872 (14)0.03610 (16)0.00271 (9)0.00194 (10)0.00172 (10)
I10.0506 (2)0.0420 (2)0.0489 (3)0.00216 (18)0.00824 (19)0.01362 (18)
S10.0558 (9)0.0362 (7)0.0553 (10)0.0041 (6)0.0098 (8)0.0051 (7)
N10.039 (2)0.0284 (19)0.036 (2)0.0004 (17)0.0004 (18)0.0029 (17)
O10.048 (3)0.055 (3)0.057 (3)0.006 (2)0.005 (2)0.017 (2)
O20.070 (3)0.047 (3)0.063 (3)0.002 (2)0.027 (3)0.000 (2)
C20.035 (3)0.037 (3)0.045 (3)0.006 (2)0.006 (2)0.003 (2)
C30.040 (3)0.030 (2)0.042 (3)0.003 (2)0.003 (2)0.002 (2)
C60.037 (3)0.040 (3)0.046 (3)0.004 (2)0.001 (2)0.006 (2)
C40.044 (3)0.040 (3)0.048 (3)0.004 (2)0.012 (3)0.007 (3)
C50.036 (3)0.050 (3)0.051 (4)0.008 (2)0.004 (2)0.011 (3)
C110.082 (6)0.053 (4)0.045 (4)0.006 (4)0.003 (4)0.000 (3)
C120.052 (5)0.111 (8)0.099 (8)0.030 (5)0.011 (5)0.024 (7)
Geometric parameters (Å, º) top
Pt1—N1i2.007 (5)C3—C41.376 (9)
Pt1—N12.007 (5)C6—C51.385 (8)
Pt1—I12.6021 (8)C6—H60.9300
Pt1—I1i2.6021 (8)C4—C51.402 (10)
S1—O21.514 (6)C4—H40.9300
S1—C111.763 (8)C5—H50.9300
S1—C121.767 (10)C11—H11A0.9600
N1—C61.334 (7)C11—H11B0.9600
N1—C21.345 (8)C11—H11C0.9600
O1—C31.336 (8)C12—H12A0.9600
O1—H10.8200C12—H12B0.9600
C2—C31.383 (8)C12—H12C0.9600
C2—H20.9300
N1i—Pt1—N1179.999 (1)N1—C6—H6119.0
N1i—Pt1—I189.13 (15)C5—C6—H6119.0
N1—Pt1—I190.87 (15)C3—C4—C5119.1 (6)
N1i—Pt1—I1i90.87 (15)C3—C4—H4120.5
N1—Pt1—I1i89.13 (15)C5—C4—H4120.5
I1—Pt1—I1i180.0C6—C5—C4119.0 (6)
O2—S1—C11105.5 (4)C6—C5—H5120.5
O2—S1—C12105.1 (5)C4—C5—H5120.5
C11—S1—C1297.6 (5)S1—C11—H11A109.5
C6—N1—C2118.5 (5)S1—C11—H11B109.5
C6—N1—Pt1122.1 (4)H11A—C11—H11B109.5
C2—N1—Pt1119.5 (4)S1—C11—H11C109.5
C3—O1—H1109.5H11A—C11—H11C109.5
N1—C2—C3123.5 (5)H11B—C11—H11C109.5
N1—C2—H2118.3S1—C12—H12A109.5
C3—C2—H2118.3S1—C12—H12B109.5
O1—C3—C4125.5 (5)H12A—C12—H12B109.5
O1—C3—C2116.5 (6)S1—C12—H12C109.5
C4—C3—C2118.0 (6)H12A—C12—H12C109.5
N1—C6—C5121.9 (6)H12B—C12—H12C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.821.772.583 (7)173
Symmetry code: (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[PtI2(C5H5NO)2]·2C2H6OS
Mr795.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.0870 (12), 7.8070 (16), 12.305 (3)
α, β, γ (°)76.52 (3), 82.95 (3), 81.87 (3)
V3)560.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)9.22
Crystal size (mm)0.19 × 0.15 × 0.05
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.091, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
3570, 3281, 2568
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.114, 1.07
No. of reflections3281
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 2.75

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.772.583 (7)173
Symmetry code: (i) x+2, y, z+2.
 

References

First citationBeusichem, N. V. & Farrell, N. (1992). Inorg. Chem. 31, 634–639.  Google Scholar
First citationBierbach, U., Qu, Y., Hambley, T.W., Peroutka, J., Nguyen, H.L., Doedee, M. & Farrell, N. (1999). Inorg. Chem. 38, 3535–3542.  CrossRef PubMed CAS Google Scholar
First citationChowdhury, A., Huq, F., Abdullah, A., Beale, P. & Fisher, K. (2005). Inorg. Biochem. 99, 1098–1112.  CrossRef CAS Google Scholar
First citationDaghriri, H., Huq, F. & Beale, P. (2004). Inorg. Biochem. 98, 1722–1733.  CrossRef CAS Google Scholar
First citationFarrell, N., Kelland, L. R., Roberts, J. D. & Beusichem, M. V. (1992). Cancer Res. 52, 5065–5072.  PubMed CAS Web of Science Google Scholar
First citationHuq, F., Yu, J. Q., Daghriri, H. & Beale, P. (2004). Inorg. Biochem. 98, 1261–1270.  CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds