organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1311-o1312

1-Benzyl-5-meth­­oxy-2′,3-di­methyl-4,6-dioxa-2-aza­spiro­[bi­cyclo­[3.2.0]hept-2-ene-7,4′-iso­quinoline]-1′,3′(2′H,4′H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2011; accepted 27 April 2011; online 7 May 2011)

In the isoquinoline ring system of the title mol­ecule, C22H20N2O5, the N-heterocyclic ring is in a half-boat conformation. The dioxa-2-aza­spiro ring is essentially planar [maximum deviation = 0.026 (1) Å] and forms dihedral angles of 22.53 (5) and 64.46 (5)° with the benzene and phenyl rings, respectively. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(7) ring motif. In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds into layers parallel to (102).

Related literature

For general background to and the potential biological activity of the title compound, see: Du et al. (2008[Du, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205-30215.]); Chen et al. (2006[Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613-1623.]); Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Harris et al. (2005[Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610-1619.]); Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893-4895.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9 3629-3631.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271-o1272.],b[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273-o1274.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O5

  • Mr = 392.40

  • Monoclinic, P 21 /c

  • a = 9.7261 (2) Å

  • b = 12.4444 (2) Å

  • c = 15.8413 (3) Å

  • β = 108.884 (1)°

  • V = 1814.16 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.71 × 0.44 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.975

  • 21150 measured reflections

  • 5368 independent reflections

  • 4883 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.02

  • 5368 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O5 0.93 2.51 3.3026 (12) 143
C20—H20C⋯O2i 0.96 2.49 3.4424 (13) 174
C21—H21B⋯N2ii 0.96 2.52 3.4018 (12) 152
C22—H22C⋯O2ii 0.96 2.50 3.3854 (12) 154
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinoline-1,3,4-trione derivatives were reported to be a type of small molecular inhibitor against caspase-3 which can promote apoptosis of the cells (Du et al., 2008; Chen et al., 2006). Compounds containing an oxazole moiety have been found to inhibit the activity of malignant tumors (Harris et al., 2005). Since many natural products especially the alkaloids containing isoquinoline or oxazole ring are bioactive, there has been intense interest in building frameworks containing isoquinoline moieties with an oxazole group (Yu et al., 2010; Zhang et al., 2004; Wang et al., 2010). The title compound was derived from photocycloaddition of isoquinoline-1,3,4-trione and oxazole (Huang et al., 2011). Since it may have a potential use in biochemical and pharmaceutical fields, we report in this paper the crystal structure of the title compound with a relative configuration of (1S*, 4'S*, 5R*).

In the title racemic compound, Fig. 1, atoms C9, C10 and C12 are the stereo centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.222 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.329 (1) Å, Θ = 62.51 (17)° and ϕ = 104.40 (18)°. The dioxa-2-azaspiro ring (N2/O4/C10-C12) is essentially planar [maximum deviation of 0.026 (1) Å at atoms O4 and C10] and it inclines at dihedral angles of 22.53 (5) and 64.46 (5)° with the benzene and phenyl rings (C3-C8 and C14-C19), respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Fun et al., 2011a, b). The molecular structure is stabilized by a weak intramolecular C15–H15A···O5 hydrogen bond (Table 1) which generates a S(7) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular C20–H20C···O2i, C21–H21B···N2ii and C22–H22C···O2ii hydrogen bonds (see Table 1 for symmetry codes) into two-dimensional planes parallel to (102).

Related literature top

For general background to and the potential biological activity of the title compound, see: Du et al. (2008); Chen et al. (2006); Yu et al. (2010); Harris et al. (2005); Zhang et al. (2004); Wang et al. (2010); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011a,b).

Experimental top

The title compound was the main product from the photoreaction between isoquinoline-1,3,4-trione and 4-benzyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound was obtained from slow evaporation of an acetone and petroleum ether solution (1:5) (m.p. 463-465 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.75 Å from C1 and the deepest hole is located at 0.59 Å from C10.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. A weak intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
1-Benzyl-5-methoxy-2',3-dimethyl-4,6-dioxa-2-azaspiro[bicyclo[3.2.0]hept- 2-ene-7,4'-isoquinoline]-1',3'(2'H,4'H)-dione top
Crystal data top
C22H20N2O5F(000) = 824
Mr = 392.40Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9898 reflections
a = 9.7261 (2) Åθ = 2.7–30.2°
b = 12.4444 (2) ŵ = 0.10 mm1
c = 15.8413 (3) ÅT = 100 K
β = 108.884 (1)°Block, colourless
V = 1814.16 (6) Å30.71 × 0.44 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5368 independent reflections
Radiation source: fine-focus sealed tube4883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.931, Tmax = 0.975k = 1717
21150 measured reflectionsl = 1522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.7208P]
where P = (Fo2 + 2Fc2)/3
5368 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H20N2O5V = 1814.16 (6) Å3
Mr = 392.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7261 (2) ŵ = 0.10 mm1
b = 12.4444 (2) ÅT = 100 K
c = 15.8413 (3) Å0.71 × 0.44 × 0.25 mm
β = 108.884 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4883 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.975Rint = 0.019
21150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
5368 reflectionsΔρmin = 0.27 e Å3
265 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70635 (8)0.71051 (6)0.91416 (5)0.01856 (15)
O20.90622 (8)1.02544 (6)0.87008 (5)0.01959 (15)
O30.71792 (7)0.61939 (5)0.75908 (4)0.01336 (13)
O40.46875 (7)0.58791 (5)0.73113 (4)0.01357 (13)
O50.56352 (7)0.57911 (5)0.61557 (4)0.01337 (13)
N10.78670 (8)0.87467 (6)0.88611 (5)0.01347 (15)
N20.46589 (8)0.77013 (6)0.74800 (5)0.01303 (15)
C10.74250 (9)0.76872 (7)0.86397 (6)0.01282 (16)
C20.86611 (10)0.93487 (7)0.84373 (6)0.01376 (16)
C30.90674 (9)0.88137 (7)0.77166 (6)0.01332 (16)
C41.00910 (10)0.93045 (8)0.73946 (6)0.01692 (18)
H4A1.04340.99880.75900.020*
C51.05954 (10)0.87726 (8)0.67839 (7)0.01917 (19)
H5A1.12870.90940.65760.023*
C61.00631 (11)0.77555 (8)0.64832 (7)0.01886 (19)
H6A1.04160.73930.60830.023*
C70.90070 (10)0.72769 (8)0.67776 (6)0.01571 (17)
H7A0.86350.66070.65600.019*
C80.85086 (9)0.78033 (7)0.73984 (6)0.01255 (16)
C90.73190 (9)0.73502 (7)0.76955 (6)0.01148 (15)
C100.57599 (9)0.62694 (7)0.69477 (6)0.01140 (16)
C110.41832 (10)0.67863 (7)0.76214 (6)0.01311 (16)
C120.57073 (9)0.75055 (7)0.70176 (6)0.01121 (15)
C130.55210 (10)0.82504 (7)0.62266 (6)0.01359 (16)
H13A0.59510.89410.64470.016*
H13B0.60530.79540.58580.016*
C140.39571 (10)0.84262 (7)0.56521 (6)0.01299 (16)
C150.30401 (10)0.75654 (8)0.52783 (6)0.01561 (17)
H15A0.33840.68650.53970.019*
C160.16165 (10)0.77436 (8)0.47305 (6)0.01777 (18)
H16A0.10160.71630.44880.021*
C170.10889 (10)0.87872 (9)0.45445 (6)0.01908 (19)
H17A0.01420.89060.41730.023*
C180.19865 (11)0.96482 (8)0.49175 (7)0.01907 (19)
H18A0.16391.03470.47980.023*
C190.34088 (10)0.94687 (8)0.54716 (6)0.01628 (17)
H19A0.39991.00510.57240.020*
C200.76802 (11)0.92219 (8)0.96661 (6)0.01787 (18)
H20A0.70990.87520.98930.027*
H20B0.72050.99050.95200.027*
H20C0.86140.93181.01110.027*
C210.60558 (10)0.46687 (7)0.62301 (6)0.01648 (17)
H21A0.57140.43390.56520.025*
H21B0.56370.43100.66250.025*
H21C0.70950.46150.64630.025*
C220.31256 (10)0.65843 (8)0.80979 (6)0.01721 (18)
H22A0.27860.72570.82510.026*
H22B0.35870.61820.86320.026*
H22C0.23180.61820.77200.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (3)0.0169 (3)0.0153 (3)0.0026 (3)0.0065 (3)0.0021 (3)
O20.0232 (3)0.0136 (3)0.0192 (3)0.0043 (3)0.0031 (3)0.0019 (3)
O30.0134 (3)0.0090 (3)0.0152 (3)0.0000 (2)0.0012 (2)0.0001 (2)
O40.0156 (3)0.0110 (3)0.0158 (3)0.0014 (2)0.0074 (2)0.0007 (2)
O50.0181 (3)0.0099 (3)0.0120 (3)0.0012 (2)0.0047 (2)0.0010 (2)
N10.0148 (3)0.0127 (3)0.0119 (3)0.0008 (3)0.0030 (3)0.0011 (3)
N20.0123 (3)0.0137 (3)0.0127 (3)0.0009 (3)0.0035 (3)0.0012 (3)
C10.0118 (4)0.0126 (4)0.0122 (4)0.0006 (3)0.0013 (3)0.0000 (3)
C20.0127 (4)0.0129 (4)0.0131 (4)0.0003 (3)0.0004 (3)0.0012 (3)
C30.0118 (4)0.0133 (4)0.0131 (4)0.0000 (3)0.0016 (3)0.0015 (3)
C40.0141 (4)0.0168 (4)0.0180 (4)0.0023 (3)0.0026 (3)0.0034 (3)
C50.0149 (4)0.0227 (5)0.0204 (4)0.0003 (3)0.0064 (3)0.0064 (4)
C60.0185 (4)0.0211 (5)0.0191 (4)0.0040 (3)0.0089 (4)0.0034 (3)
C70.0163 (4)0.0147 (4)0.0162 (4)0.0019 (3)0.0053 (3)0.0011 (3)
C80.0113 (4)0.0127 (4)0.0123 (4)0.0008 (3)0.0018 (3)0.0019 (3)
C90.0125 (4)0.0088 (3)0.0120 (4)0.0001 (3)0.0025 (3)0.0002 (3)
C100.0121 (4)0.0103 (3)0.0114 (4)0.0003 (3)0.0032 (3)0.0002 (3)
C110.0134 (4)0.0142 (4)0.0110 (4)0.0005 (3)0.0029 (3)0.0016 (3)
C120.0115 (3)0.0098 (3)0.0114 (4)0.0001 (3)0.0025 (3)0.0008 (3)
C130.0126 (4)0.0121 (4)0.0145 (4)0.0002 (3)0.0023 (3)0.0027 (3)
C140.0133 (4)0.0137 (4)0.0114 (4)0.0007 (3)0.0032 (3)0.0012 (3)
C150.0160 (4)0.0146 (4)0.0154 (4)0.0001 (3)0.0040 (3)0.0004 (3)
C160.0148 (4)0.0216 (5)0.0160 (4)0.0033 (3)0.0037 (3)0.0014 (3)
C170.0131 (4)0.0270 (5)0.0157 (4)0.0030 (3)0.0026 (3)0.0014 (4)
C180.0181 (4)0.0185 (4)0.0188 (4)0.0063 (3)0.0035 (3)0.0021 (3)
C190.0166 (4)0.0140 (4)0.0164 (4)0.0011 (3)0.0029 (3)0.0002 (3)
C200.0207 (4)0.0191 (4)0.0135 (4)0.0005 (3)0.0052 (3)0.0037 (3)
C210.0208 (4)0.0107 (4)0.0170 (4)0.0020 (3)0.0049 (3)0.0016 (3)
C220.0175 (4)0.0196 (4)0.0167 (4)0.0016 (3)0.0085 (3)0.0009 (3)
Geometric parameters (Å, º) top
O1—C11.2089 (11)C10—C121.5443 (12)
O2—C21.2212 (11)C11—C221.4810 (12)
O3—C101.4290 (10)C12—C131.5216 (12)
O3—C91.4498 (10)C13—C141.5145 (12)
O4—C111.3829 (11)C13—H13A0.9700
O4—C101.4298 (10)C13—H13B0.9700
O5—C101.3581 (10)C14—C191.3967 (12)
O5—C211.4495 (11)C14—C151.3971 (13)
N1—C21.3942 (12)C15—C161.3934 (13)
N1—C11.3959 (11)C15—H15A0.9300
N1—C201.4694 (12)C16—C171.3924 (14)
N2—C111.2759 (12)C16—H16A0.9300
N2—C121.4557 (11)C17—C181.3876 (15)
C1—C91.5244 (12)C17—H17A0.9300
C2—C31.4815 (13)C18—C191.3957 (13)
C3—C41.3976 (12)C18—H18A0.9300
C3—C81.3975 (12)C19—H19A0.9300
C4—C51.3864 (14)C20—H20A0.9600
C4—H4A0.9300C20—H20B0.9600
C5—C61.3919 (15)C20—H20C0.9600
C5—H5A0.9300C21—H21A0.9600
C6—C71.3919 (13)C21—H21B0.9600
C6—H6A0.9300C21—H21C0.9600
C7—C81.3928 (12)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C91.4935 (12)C22—H22C0.9600
C9—C121.5995 (12)
C10—O3—C992.84 (6)N2—C12—C10104.34 (7)
C11—O4—C10104.75 (7)C13—C12—C10123.07 (7)
C10—O5—C21114.13 (7)N2—C12—C9112.11 (7)
C2—N1—C1124.06 (8)C13—C12—C9117.14 (7)
C2—N1—C20116.42 (8)C10—C12—C983.10 (6)
C1—N1—C20118.92 (8)C14—C13—C12114.31 (7)
C11—N2—C12106.97 (7)C14—C13—H13A108.7
O1—C1—N1122.16 (8)C12—C13—H13A108.7
O1—C1—C9122.60 (8)C14—C13—H13B108.7
N1—C1—C9115.08 (7)C12—C13—H13B108.7
O2—C2—N1119.79 (8)H13A—C13—H13B107.6
O2—C2—C3122.87 (8)C19—C14—C15118.45 (8)
N1—C2—C3117.20 (8)C19—C14—C13119.99 (8)
C4—C3—C8120.09 (8)C15—C14—C13121.55 (8)
C4—C3—C2118.95 (8)C16—C15—C14120.75 (9)
C8—C3—C2120.84 (8)C16—C15—H15A119.6
C5—C4—C3120.06 (9)C14—C15—H15A119.6
C5—C4—H4A120.0C17—C16—C15120.27 (9)
C3—C4—H4A120.0C17—C16—H16A119.9
C4—C5—C6119.77 (9)C15—C16—H16A119.9
C4—C5—H5A120.1C18—C17—C16119.48 (9)
C6—C5—H5A120.1C18—C17—H17A120.3
C5—C6—C7120.50 (9)C16—C17—H17A120.3
C5—C6—H6A119.7C17—C18—C19120.21 (9)
C7—C6—H6A119.7C17—C18—H18A119.9
C6—C7—C8119.90 (9)C19—C18—H18A119.9
C6—C7—H7A120.0C18—C19—C14120.83 (9)
C8—C7—H7A120.0C18—C19—H19A119.6
C7—C8—C3119.62 (8)C14—C19—H19A119.6
C7—C8—C9121.81 (8)N1—C20—H20A109.5
C3—C8—C9118.46 (8)N1—C20—H20B109.5
O3—C9—C8113.09 (7)H20A—C20—H20B109.5
O3—C9—C1111.06 (7)N1—C20—H20C109.5
C8—C9—C1113.09 (7)H20A—C20—H20C109.5
O3—C9—C1290.45 (6)H20B—C20—H20C109.5
C8—C9—C12115.70 (7)O5—C21—H21A109.5
C1—C9—C12111.46 (7)O5—C21—H21B109.5
O5—C10—O3113.99 (7)H21A—C21—H21B109.5
O5—C10—O4111.38 (7)O5—C21—H21C109.5
O3—C10—O4110.66 (7)H21A—C21—H21C109.5
O5—C10—C12120.51 (7)H21B—C21—H21C109.5
O3—C10—C1293.50 (6)C11—C22—H22A109.5
O4—C10—C12105.31 (6)C11—C22—H22B109.5
N2—C11—O4118.40 (8)H22A—C22—H22B109.5
N2—C11—C22126.30 (8)C11—C22—H22C109.5
O4—C11—C22115.29 (8)H22A—C22—H22C109.5
N2—C12—C13113.35 (7)H22B—C22—H22C109.5
C2—N1—C1—O1161.43 (9)C9—O3—C10—C122.69 (6)
C20—N1—C1—O19.42 (13)C11—O4—C10—O5136.88 (7)
C2—N1—C1—C923.15 (12)C11—O4—C10—O395.23 (8)
C20—N1—C1—C9166.00 (8)C11—O4—C10—C124.62 (8)
C1—N1—C2—O2176.58 (8)C12—N2—C11—O41.64 (11)
C20—N1—C2—O25.52 (13)C12—N2—C11—C22178.08 (8)
C1—N1—C2—C30.79 (13)C10—O4—C11—N24.24 (10)
C20—N1—C2—C3170.27 (8)C10—O4—C11—C22175.51 (7)
O2—C2—C3—C47.97 (14)C11—N2—C12—C13134.85 (8)
N1—C2—C3—C4167.68 (8)C11—N2—C12—C101.51 (9)
O2—C2—C3—C8175.94 (9)C11—N2—C12—C989.79 (8)
N1—C2—C3—C88.41 (13)O5—C10—C12—N2130.74 (8)
C8—C3—C4—C52.44 (14)O3—C10—C12—N2108.67 (7)
C2—C3—C4—C5173.68 (9)O4—C10—C12—N23.87 (9)
C3—C4—C5—C60.93 (14)O5—C10—C12—C130.15 (12)
C4—C5—C6—C71.28 (15)O3—C10—C12—C13120.45 (8)
C5—C6—C7—C81.96 (14)O4—C10—C12—C13127.02 (8)
C6—C7—C8—C30.44 (14)O5—C10—C12—C9118.14 (8)
C6—C7—C8—C9176.53 (8)O3—C10—C12—C92.45 (6)
C4—C3—C8—C71.75 (13)O4—C10—C12—C9114.99 (7)
C2—C3—C8—C7174.30 (8)O3—C9—C12—N2100.30 (7)
C4—C3—C8—C9174.47 (8)C8—C9—C12—N2143.66 (8)
C2—C3—C8—C99.48 (12)C1—C9—C12—N212.61 (10)
C10—O3—C9—C8115.75 (7)O3—C9—C12—C13126.16 (8)
C10—O3—C9—C1115.86 (7)C8—C9—C12—C1310.12 (11)
C10—O3—C9—C122.59 (6)C1—C9—C12—C13120.93 (8)
C7—C8—C9—O324.17 (12)O3—C9—C12—C102.41 (6)
C3—C8—C9—O3159.69 (8)C8—C9—C12—C10113.63 (8)
C7—C8—C9—C1151.50 (8)C1—C9—C12—C10115.32 (7)
C3—C8—C9—C132.36 (11)N2—C12—C13—C1442.62 (10)
C7—C8—C9—C1278.22 (10)C10—C12—C13—C1484.47 (10)
C3—C8—C9—C1297.91 (9)C9—C12—C13—C14175.60 (7)
O1—C1—C9—O317.55 (12)C12—C13—C14—C19126.06 (9)
N1—C1—C9—O3167.04 (7)C12—C13—C14—C1555.14 (11)
O1—C1—C9—C8145.95 (9)C19—C14—C15—C160.68 (13)
N1—C1—C9—C838.65 (10)C13—C14—C15—C16178.14 (8)
O1—C1—C9—C1281.68 (11)C14—C15—C16—C170.27 (14)
N1—C1—C9—C1293.73 (9)C15—C16—C17—C180.75 (14)
C21—O5—C10—O355.72 (9)C16—C17—C18—C190.27 (14)
C21—O5—C10—O470.36 (9)C17—C18—C19—C140.70 (15)
C21—O5—C10—C12165.60 (7)C15—C14—C19—C181.16 (14)
C9—O3—C10—O5123.05 (7)C13—C14—C19—C18177.68 (8)
C9—O3—C10—O4110.49 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O50.932.513.3026 (12)143
C20—H20C···O2i0.962.493.4424 (13)174
C21—H21B···N2ii0.962.523.4018 (12)152
C22—H22C···O2ii0.962.503.3854 (12)154
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H20N2O5
Mr392.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7261 (2), 12.4444 (2), 15.8413 (3)
β (°) 108.884 (1)
V3)1814.16 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.71 × 0.44 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
21150, 5368, 4883
Rint0.019
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.02
No. of reflections5368
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O50.932.513.3026 (12)143
C20—H20C···O2i0.962.493.4424 (13)174
C21—H21B···N2ii0.962.523.4018 (12)152
C22—H22C···O2ii0.962.503.3854 (12)154
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Program for New Century Excellent Talents in University (NCET-08-0271) of China is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205–30215.  CrossRef CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9 3629–3631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1311-o1312
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds