organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-diaminium bis­­[3,4,5,6-tetra­chloro-2-(meth­­oxy­carbon­yl)benzoate]

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: lzpwfu@163.com

(Received 29 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title salt, C4H14N2+·2C9H3Cl4O4, the cation lies on an inversion center. In the anion, the mean planes of meth­oxy­carbonyl and carboxyl­ate groups form dihedral angles of 64.9 (3) and 58.5 (3)°, respectively, with the benzene ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the components into sheets parallel to (100).

Related literature

For a related structure, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o901.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·2C9H3Cl4O4

  • Mr = 724.00

  • Monoclinic, P 21 /c

  • a = 14.4243 (13) Å

  • b = 6.1041 (6) Å

  • c = 16.9653 (15) Å

  • β = 97.056 (1)°

  • V = 1482.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 K

  • 0.46 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.738

  • 7307 measured reflections

  • 2603 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.05

  • 2603 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3i 0.89 1.85 2.735 (3) 172
N1—H1B⋯O4ii 0.89 1.94 2.823 (3) 174
N1—H1A⋯O4 0.89 1.88 2.761 (3) 169
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the present work, the reaction of 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoic acid and butane-1,4-diamine in methanol was expected to yield 4,5,6,7-tetrachloro-2-[4-(4,5,6,7- tetrachloro-1,3-dioxoisoindolin-2-yl)butanyl]isoindoline-1,3-dione. However, the product was the title compound and this may have occurred because of the reduced time and temperature of the reaction. The asymmetric unit of the title compound (I) contains one half of a butane-1,4-diaminium cation and one 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate anions (Fig. 1). In the anion, the mean planes of the methoxycarbonyl and carboxyl groups are aligned at dihedral angles of 64.9 (3) and 58.5 (3) °, respectively with the benzene ring. The bond lengths and angles are in agreement with those which are related in hexane-1,6-diaminium bis[3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate](Li, 2011). In the crystal, intermolecular N—H···O hydrogen bonds connect the components into two-dimensional sheets parallel to (100) (Fig. 2 and Table 1).

Related literature top

For a related structure, see: Li (2011).

Experimental top

A mixture of 4,5,6,7-tetrachloroisobenzofuran-1,3-dione (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Then butane-1,4-diamine (0.44 g, 0.005 mol) was added to the above solution and mixed for 20 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding-model approximation with C—H = 0.96–0.97 Å and N—H = 0.89 Å Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids. The symmetry complete cation is shown with unlabeled atoms related by the symmetry operator (-x+1, -y+2, -z+1).
[Figure 2] Fig. 2. The crystal packing of (I) with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
Butane-1,4-diaminium bis[3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate] top
Crystal data top
C4H14N22+·2C9H3Cl4O4F(000) = 732
Mr = 724.00Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2612 reflections
a = 14.4243 (13) Åθ = 2.4–26.5°
b = 6.1041 (6) ŵ = 0.81 mm1
c = 16.9653 (15) ÅT = 298 K
β = 97.056 (1)°Block, colorless
V = 1482.4 (2) Å30.46 × 0.43 × 0.40 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2603 independent reflections
Radiation source: fine-focus sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 917
Tmin = 0.708, Tmax = 0.738k = 77
7307 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.0059P]
where P = (Fo2 + 2Fc2)/3
2603 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C4H14N22+·2C9H3Cl4O4V = 1482.4 (2) Å3
Mr = 724.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.4243 (13) ŵ = 0.81 mm1
b = 6.1041 (6) ÅT = 298 K
c = 16.9653 (15) Å0.46 × 0.43 × 0.40 mm
β = 97.056 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1908 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.738Rint = 0.024
7307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2603 reflectionsΔρmin = 0.20 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27338 (6)0.79357 (15)0.17344 (4)0.0617 (3)
Cl20.10875 (6)1.10088 (15)0.19656 (5)0.0705 (3)
Cl30.01193 (5)1.07644 (14)0.34929 (5)0.0642 (3)
Cl40.07322 (6)0.72291 (15)0.47687 (5)0.0630 (3)
N10.46526 (16)0.9951 (4)0.31490 (13)0.0465 (6)
H1A0.44160.86030.31280.070*
H1B0.50021.01320.27560.070*
H1C0.41891.09230.30990.070*
O10.19109 (14)0.3094 (3)0.46777 (12)0.0559 (5)
O20.32465 (15)0.4957 (4)0.48905 (13)0.0675 (6)
O30.31815 (14)0.2789 (3)0.31198 (14)0.0626 (6)
O40.41355 (12)0.5599 (3)0.30166 (11)0.0459 (5)
C10.24890 (19)0.4667 (5)0.45324 (15)0.0415 (6)
C20.33628 (19)0.4761 (4)0.30956 (14)0.0379 (6)
C30.20896 (17)0.6149 (4)0.38674 (15)0.0376 (6)
C40.25510 (17)0.6303 (4)0.31904 (15)0.0358 (6)
C50.22239 (18)0.7791 (4)0.26073 (15)0.0390 (6)
C60.14757 (18)0.9170 (4)0.26928 (16)0.0428 (7)
C70.10285 (18)0.9025 (4)0.33718 (17)0.0430 (7)
C80.13250 (18)0.7475 (5)0.39497 (16)0.0415 (7)
C90.2212 (2)0.1710 (6)0.53489 (19)0.0662 (9)
H9A0.26300.06100.51950.099*
H9B0.16790.10180.55290.099*
H9C0.25290.25810.57700.099*
C100.5233 (2)1.0276 (6)0.39168 (18)0.0619 (9)
H10A0.54611.17720.39500.074*
H10B0.57700.93090.39470.074*
C110.4702 (2)0.9828 (6)0.46041 (17)0.0578 (8)
H11A0.44770.83300.45720.069*
H11B0.41631.07910.45720.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0654 (5)0.0794 (6)0.0435 (4)0.0200 (4)0.0191 (4)0.0101 (4)
Cl20.0592 (5)0.0752 (6)0.0774 (6)0.0234 (5)0.0093 (4)0.0269 (5)
Cl30.0443 (4)0.0644 (5)0.0856 (6)0.0176 (4)0.0143 (4)0.0125 (4)
Cl40.0541 (5)0.0812 (6)0.0597 (5)0.0003 (4)0.0309 (4)0.0073 (4)
N10.0478 (14)0.0430 (13)0.0528 (14)0.0035 (11)0.0233 (11)0.0023 (11)
O10.0553 (13)0.0521 (12)0.0602 (13)0.0123 (11)0.0065 (10)0.0088 (10)
O20.0502 (13)0.0832 (16)0.0665 (14)0.0169 (12)0.0032 (11)0.0221 (12)
O30.0513 (13)0.0355 (12)0.1034 (18)0.0027 (10)0.0198 (12)0.0069 (11)
O40.0376 (11)0.0456 (11)0.0581 (12)0.0035 (9)0.0206 (9)0.0009 (9)
C10.0385 (16)0.0471 (17)0.0407 (15)0.0064 (13)0.0117 (13)0.0019 (12)
C20.0390 (16)0.0385 (16)0.0372 (14)0.0043 (13)0.0087 (12)0.0014 (11)
C30.0320 (14)0.0382 (15)0.0433 (14)0.0038 (12)0.0076 (11)0.0036 (12)
C40.0319 (14)0.0339 (14)0.0424 (14)0.0005 (11)0.0077 (11)0.0051 (11)
C50.0352 (15)0.0435 (15)0.0393 (14)0.0011 (12)0.0083 (11)0.0043 (12)
C60.0357 (15)0.0415 (16)0.0502 (16)0.0029 (13)0.0014 (12)0.0003 (13)
C70.0308 (14)0.0415 (16)0.0572 (17)0.0040 (12)0.0074 (13)0.0096 (13)
C80.0335 (14)0.0487 (17)0.0448 (15)0.0025 (13)0.0144 (12)0.0093 (13)
C90.077 (2)0.062 (2)0.063 (2)0.0074 (19)0.0209 (18)0.0136 (17)
C100.0485 (19)0.082 (2)0.057 (2)0.0095 (17)0.0134 (15)0.0004 (17)
C110.0532 (19)0.067 (2)0.0557 (18)0.0077 (17)0.0179 (15)0.0026 (16)
Geometric parameters (Å, º) top
Cl1—C51.735 (3)C3—C81.389 (4)
Cl2—C61.711 (3)C3—C41.400 (3)
Cl3—C71.719 (3)C4—C51.382 (4)
Cl4—C81.725 (3)C5—C61.390 (4)
N1—C101.473 (4)C6—C71.390 (4)
N1—H1A0.8900C7—C81.391 (4)
N1—H1B0.8900C9—H9A0.9600
N1—H1C0.8900C9—H9B0.9600
O1—C11.314 (3)C9—H9C0.9600
O1—C91.441 (4)C10—C111.497 (4)
O2—C11.196 (3)C10—H10A0.9700
O3—C21.234 (3)C10—H10B0.9700
O4—C21.248 (3)C11—C11i1.518 (6)
C1—C31.504 (4)C11—H11A0.9700
C2—C41.526 (3)C11—H11B0.9700
C10—N1—H1A109.5C6—C7—C8119.6 (2)
C10—N1—H1B109.5C6—C7—Cl3119.9 (2)
H1A—N1—H1B109.5C8—C7—Cl3120.6 (2)
C10—N1—H1C109.5C3—C8—C7120.3 (2)
H1A—N1—H1C109.5C3—C8—Cl4120.6 (2)
H1B—N1—H1C109.5C7—C8—Cl4119.1 (2)
C1—O1—C9116.1 (2)O1—C9—H9A109.5
O2—C1—O1125.0 (3)O1—C9—H9B109.5
O2—C1—C3122.2 (3)H9A—C9—H9B109.5
O1—C1—C3112.7 (2)O1—C9—H9C109.5
O3—C2—O4126.8 (3)H9A—C9—H9C109.5
O3—C2—C4115.5 (2)H9B—C9—H9C109.5
O4—C2—C4117.7 (2)N1—C10—C11112.0 (2)
C8—C3—C4120.5 (2)N1—C10—H10A109.2
C8—C3—C1120.7 (2)C11—C10—H10A109.2
C4—C3—C1118.6 (2)N1—C10—H10B109.2
C5—C4—C3118.5 (2)C11—C10—H10B109.2
C5—C4—C2121.9 (2)H10A—C10—H10B107.9
C3—C4—C2119.6 (2)C10—C11—C11i112.1 (3)
C4—C5—C6121.6 (2)C10—C11—H11A109.2
C4—C5—Cl1120.1 (2)C11i—C11—H11A109.2
C6—C5—Cl1118.3 (2)C10—C11—H11B109.2
C5—C6—C7119.5 (2)C11i—C11—H11B109.2
C5—C6—Cl2120.8 (2)H11A—C11—H11B107.9
C7—C6—Cl2119.7 (2)
C9—O1—C1—O23.3 (4)C4—C5—C6—C71.5 (4)
C9—O1—C1—C3175.2 (2)Cl1—C5—C6—C7177.3 (2)
O2—C1—C3—C8112.4 (3)C4—C5—C6—Cl2179.6 (2)
O1—C1—C3—C866.2 (3)Cl1—C5—C6—Cl21.6 (3)
O2—C1—C3—C462.3 (4)C5—C6—C7—C81.2 (4)
O1—C1—C3—C4119.2 (3)Cl2—C6—C7—C8177.8 (2)
C8—C3—C4—C50.4 (4)C5—C6—C7—Cl3178.6 (2)
C1—C3—C4—C5175.1 (2)Cl2—C6—C7—Cl32.5 (3)
C8—C3—C4—C2177.3 (2)C4—C3—C8—C72.2 (4)
C1—C3—C4—C28.0 (4)C1—C3—C8—C7172.4 (2)
O3—C2—C4—C5119.9 (3)C4—C3—C8—Cl4178.0 (2)
O4—C2—C4—C561.3 (3)C1—C3—C8—Cl47.5 (3)
O3—C2—C4—C356.9 (3)C6—C7—C8—C33.0 (4)
O4—C2—C4—C3121.9 (3)Cl3—C7—C8—C3176.8 (2)
C3—C4—C5—C62.3 (4)C6—C7—C8—Cl4177.2 (2)
C2—C4—C5—C6179.1 (2)Cl3—C7—C8—Cl43.1 (3)
C3—C4—C5—Cl1176.52 (19)N1—C10—C11—C11i179.8 (3)
C2—C4—C5—Cl10.3 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3ii0.891.852.735 (3)172
N1—H1B···O4iii0.891.942.823 (3)174
N1—H1A···O40.891.882.761 (3)169
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H14N22+·2C9H3Cl4O4
Mr724.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.4243 (13), 6.1041 (6), 16.9653 (15)
β (°) 97.056 (1)
V3)1482.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.46 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.708, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
7307, 2603, 1908
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05
No. of reflections2603
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3i0.891.852.735 (3)172
N1—H1B···O4ii0.891.942.823 (3)174
N1—H1A···O40.891.882.761 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2010BM033) for support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds