organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­anilinium hydrogen phthalate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: lzpwfu@163.com

(Received 29 April 2011; accepted 11 May 2011; online 14 May 2011)

In the anion of the title compound, C6H7BrN+·C8H5O4, the dihedral angles formed by the benzene ring and the mean planes of the –COOH and –COO groups are 20.6 (3) and 83.2 (3)°, respectively. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect the cations and anions, forming a two-dimensional network parallel to (001).

Related literature

For applications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). J. Biol. Org. Med. Chem. 10, 3067-3073.]). For the crystal structures of 4-chloro­anilinium, 2-hy­droxy­anilinium and 3-hy­droxy­anilinium hydrogen phthalates, see: Jagan & Sivakumar (2009[Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414-o418.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7BrN+·C8H5O4

  • Mr = 338.16

  • Monoclinic, C 2

  • a = 13.0890 (14) Å

  • b = 7.6670 (7) Å

  • c = 14.6900 (14) Å

  • β = 106.671 (1)°

  • V = 1412.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 298 K

  • 0.41 × 0.37 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.380, Tmax = 0.621

  • 3555 measured reflections

  • 2364 independent reflections

  • 1659 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.127

  • S = 0.94

  • 2364 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1027 Friedel pairs

  • Flack parameter: 0.012 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.80 (6) 1.76 (6) 2.518 (6) 158 (7)
N1—H1C⋯O4 0.89 2.37 2.962 (7) 125
N1—H1C⋯O1ii 0.89 2.13 2.916 (7) 147
N1—H1B⋯O4iii 0.89 1.96 2.804 (7) 159
N1—H1A⋯O3iv 0.89 1.96 2.828 (6) 164
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) -x+1, y, -z+1; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalimides and N-substituted phthalimides are animportant class of compounds because of their interesting biological activities (Lima et al., 2002). 4-Bromoanilinium hydrogen phthalate is an intermediate in the preparation of N-substituted phthalimides. The crystal structures of 4-chloroanilinium, 2-hydroxyanilinium and 3-hydroxyanilinium hydrogen phthalates have already been reported (Jagan & Sivakumar, 2009). In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound (I) contains one 4-bromoanilinium cation and one hydrogen phthalate anion (Fig. 1). The dihedral angles formed by the benzene ring and the mean planes of the —COOH and —COO- groups are 20.6 (3) and 83.2 (3) °, respectively. In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds connect cations and anions to form a two-dimensional network parallel to (001) (Fig. 2).

Related literature top

For applications of phthalimides and N-substituted phthalimides, see: Lima et al. (2002). For the crystal structures of 4-chloroanilinium, 2-hydroxyanilinium and 3-hydroxyanilinium hydrogen phthalates, see: Jagan & Sivakumar (2009).

Experimental top

A mixture of phthalic anhydride (1.52 g, 0.01 mol) and 4-bromoaniline (1.72 g, 0.01 mol) in 20 ml ethanol(95%) solution was refluxed for 0.5 h. The solution was kept at room temperature for 7 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms bonded to C and N were initially located in difference maps and then refined in a riding-model approximation with C—H = 0.93 Å and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The H atom bonded to O was refined independently with an isotropic displacment parameter.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines.
4-Bromoanilinium 2-carboxybenzoate top
Crystal data top
C6H7BrN+·C8H5O4F(000) = 680
Mr = 338.16Dx = 1.590 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1173 reflections
a = 13.0890 (14) Åθ = 2.9–20.8°
b = 7.6670 (7) ŵ = 2.92 mm1
c = 14.6900 (14) ÅT = 298 K
β = 106.671 (1)°Block, colorless
V = 1412.2 (2) Å30.41 × 0.37 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2364 independent reflections
Radiation source: fine-focus sealed tube1659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1315
Tmin = 0.380, Tmax = 0.621k = 89
3555 measured reflectionsl = 1713
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2364 reflectionsΔρmax = 0.82 e Å3
186 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 1027 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (16)
Crystal data top
C6H7BrN+·C8H5O4V = 1412.2 (2) Å3
Mr = 338.16Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.0890 (14) ŵ = 2.92 mm1
b = 7.6670 (7) ÅT = 298 K
c = 14.6900 (14) Å0.41 × 0.37 × 0.18 mm
β = 106.671 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1659 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.621Rint = 0.045
3555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127Δρmax = 0.82 e Å3
S = 0.94Δρmin = 0.51 e Å3
2364 reflectionsAbsolute structure: Flack (1983), 1027 Friedel pairs
186 parametersAbsolute structure parameter: 0.012 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16160 (6)0.43398 (15)0.05674 (5)0.0677 (3)
N10.3761 (4)0.0249 (6)0.4004 (3)0.0329 (13)
H1A0.34070.12530.39520.049*
H1B0.37310.03030.45280.049*
H1C0.44380.04620.40350.049*
O10.5651 (4)0.7623 (6)0.4163 (4)0.0553 (16)
O20.6767 (3)0.5378 (6)0.4617 (4)0.0377 (12)
H20.699 (4)0.569 (9)0.516 (4)0.03 (2)*
O30.7303 (3)0.1975 (5)0.3875 (3)0.0324 (10)
O40.5788 (4)0.1691 (7)0.4309 (4)0.0385 (12)
C10.5990 (5)0.6178 (9)0.4009 (6)0.0345 (18)
C20.6314 (5)0.2287 (7)0.3804 (5)0.0255 (15)
C30.5581 (5)0.5282 (9)0.3075 (6)0.0307 (17)
C40.5732 (5)0.3475 (9)0.2962 (5)0.0297 (17)
C50.5343 (5)0.2691 (11)0.2082 (5)0.044 (2)
H50.54460.15040.20130.053*
C60.4791 (6)0.3685 (13)0.1293 (6)0.056 (3)
H60.45200.31510.07040.067*
C70.4648 (6)0.5461 (13)0.1385 (7)0.056 (2)
H70.42970.61270.08590.067*
C80.5031 (5)0.6231 (10)0.2269 (6)0.043 (2)
H80.49200.74180.23290.052*
C90.3276 (4)0.0844 (8)0.3171 (4)0.0305 (15)
C100.3175 (5)0.2651 (8)0.3301 (5)0.0342 (16)
H100.34330.31490.39010.041*
C110.2688 (4)0.3668 (9)0.2525 (5)0.0403 (17)
H110.26140.48620.25980.048*
C120.2314 (5)0.2920 (9)0.1649 (5)0.0378 (17)
C130.2417 (5)0.1129 (9)0.1509 (5)0.0425 (17)
H130.21660.06380.09080.051*
C140.2908 (4)0.0107 (8)0.2296 (5)0.0356 (16)
H140.29830.10860.22230.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0717 (5)0.0667 (6)0.0567 (5)0.0124 (6)0.0056 (3)0.0159 (6)
N10.033 (2)0.020 (3)0.047 (3)0.002 (2)0.013 (2)0.003 (2)
O10.052 (3)0.027 (3)0.082 (4)0.015 (2)0.011 (3)0.012 (3)
O20.035 (2)0.024 (2)0.045 (3)0.0035 (19)0.002 (2)0.009 (2)
O30.025 (2)0.021 (2)0.050 (3)0.0016 (17)0.0098 (19)0.001 (2)
O40.033 (2)0.040 (3)0.043 (3)0.007 (2)0.013 (2)0.004 (2)
C10.019 (3)0.030 (4)0.055 (5)0.002 (3)0.011 (3)0.005 (3)
C20.029 (4)0.011 (3)0.036 (4)0.002 (2)0.008 (3)0.007 (2)
C30.016 (3)0.036 (4)0.040 (4)0.004 (3)0.007 (3)0.007 (3)
C40.032 (4)0.022 (4)0.034 (5)0.004 (3)0.006 (3)0.007 (3)
C50.043 (4)0.043 (5)0.044 (5)0.007 (3)0.009 (4)0.004 (4)
C60.043 (4)0.074 (7)0.044 (5)0.013 (4)0.001 (4)0.002 (4)
C70.039 (4)0.066 (7)0.054 (6)0.008 (4)0.001 (4)0.017 (5)
C80.033 (4)0.027 (4)0.063 (6)0.003 (3)0.003 (4)0.014 (4)
C90.021 (3)0.035 (4)0.037 (4)0.003 (3)0.010 (3)0.008 (3)
C100.032 (3)0.030 (4)0.038 (4)0.002 (3)0.005 (3)0.004 (3)
C110.036 (3)0.034 (4)0.050 (5)0.005 (3)0.012 (3)0.005 (3)
C120.033 (3)0.041 (5)0.038 (4)0.003 (3)0.007 (3)0.008 (3)
C130.036 (4)0.052 (5)0.038 (4)0.004 (3)0.008 (3)0.007 (3)
C140.037 (3)0.024 (4)0.045 (4)0.000 (3)0.012 (3)0.006 (3)
Geometric parameters (Å, º) top
Br1—C121.927 (6)C5—H50.9300
N1—C91.468 (8)C6—C71.386 (12)
N1—H1A0.8900C6—H60.9300
N1—H1B0.8900C7—C81.382 (11)
N1—H1C0.8900C7—H70.9300
O1—C11.238 (8)C8—H80.9300
O2—C11.299 (8)C9—C141.359 (8)
O2—H20.80 (6)C9—C101.410 (9)
O3—C21.292 (7)C10—C111.377 (9)
O4—C21.236 (8)C10—H100.9300
C1—C31.490 (11)C11—C121.365 (9)
C2—C41.548 (9)C11—H110.9300
C3—C81.400 (10)C12—C131.400 (10)
C3—C41.415 (8)C13—C141.392 (9)
C4—C51.385 (11)C13—H130.9300
C5—C61.402 (12)C14—H140.9300
C9—N1—H1A109.5C8—C7—C6119.2 (9)
C9—N1—H1B109.5C8—C7—H7120.4
H1A—N1—H1B109.5C6—C7—H7120.4
C9—N1—H1C109.5C7—C8—C3122.2 (8)
H1A—N1—H1C109.5C7—C8—H8118.9
H1B—N1—H1C109.5C3—C8—H8118.9
C1—O2—H2122 (5)C14—C9—C10121.0 (6)
O1—C1—O2123.2 (7)C14—C9—N1120.1 (6)
O1—C1—C3121.9 (7)C10—C9—N1118.9 (6)
O2—C1—C3114.8 (6)C11—C10—C9118.9 (6)
O4—C2—O3127.0 (6)C11—C10—H10120.5
O4—C2—C4117.8 (6)C9—C10—H10120.5
O3—C2—C4115.2 (5)C12—C11—C10119.9 (6)
C8—C3—C4117.7 (8)C12—C11—H11120.1
C8—C3—C1120.1 (7)C10—C11—H11120.1
C4—C3—C1122.2 (7)C11—C12—C13121.8 (6)
C5—C4—C3120.5 (8)C11—C12—Br1119.8 (5)
C5—C4—C2117.1 (6)C13—C12—Br1118.4 (5)
C3—C4—C2122.4 (7)C14—C13—C12118.1 (6)
C4—C5—C6120.0 (8)C14—C13—H13121.0
C4—C5—H5120.0C12—C13—H13121.0
C6—C5—H5120.0C9—C14—C13120.4 (6)
C7—C6—C5120.3 (9)C9—C14—H14119.8
C7—C6—H6119.8C13—C14—H14119.8
C5—C6—H6119.8
O1—C1—C3—C818.0 (10)C5—C6—C7—C81.6 (13)
O2—C1—C3—C8157.9 (6)C6—C7—C8—C31.3 (12)
O1—C1—C3—C4162.5 (7)C4—C3—C8—C70.3 (10)
O2—C1—C3—C421.7 (9)C1—C3—C8—C7179.3 (7)
C8—C3—C4—C50.2 (10)C14—C9—C10—C110.4 (9)
C1—C3—C4—C5179.8 (6)N1—C9—C10—C11177.8 (5)
C8—C3—C4—C2179.1 (5)C9—C10—C11—C120.0 (9)
C1—C3—C4—C21.3 (10)C10—C11—C12—C130.5 (10)
O4—C2—C4—C595.0 (7)C10—C11—C12—Br1179.2 (4)
O3—C2—C4—C582.4 (7)C11—C12—C13—C140.7 (9)
O4—C2—C4—C383.9 (8)Br1—C12—C13—C14179.0 (4)
O3—C2—C4—C398.7 (7)C10—C9—C14—C130.2 (8)
C3—C4—C5—C60.1 (11)N1—C9—C14—C13178.0 (5)
C2—C4—C5—C6178.9 (6)C12—C13—C14—C90.3 (9)
C4—C5—C6—C71.0 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.80 (6)1.76 (6)2.518 (6)158 (7)
N1—H1C···O40.892.372.962 (7)125
N1—H1C···O1ii0.892.132.916 (7)147
N1—H1B···O4iii0.891.962.804 (7)159
N1—H1A···O3iv0.891.962.828 (6)164
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7BrN+·C8H5O4
Mr338.16
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)13.0890 (14), 7.6670 (7), 14.6900 (14)
β (°) 106.671 (1)
V3)1412.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.41 × 0.37 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.380, 0.621
No. of measured, independent and
observed [I > 2σ(I)] reflections
3555, 2364, 1659
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 0.94
No. of reflections2364
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.51
Absolute structureFlack (1983), 1027 Friedel pairs
Absolute structure parameter0.012 (16)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.80 (6)1.76 (6)2.518 (6)158 (7)
N1—H1C···O40.892.372.962 (7)125
N1—H1C···O1ii0.892.132.916 (7)147
N1—H1B···O4iii0.891.962.804 (7)159
N1—H1A···O3iv0.891.962.828 (6)164
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x1/2, y1/2, z.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2010BM033) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. & Barreiro, E. (2002). J. Biol. Org. Med. Chem. 10, 3067–3073.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds