organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyrimidin-1-ium 4-methyl­benzene­sulfonate

aDepartment of Chemistry, Yazd Branch, IslamicAzad University, Yazd, Iran.
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 29 April 2011; accepted 13 May 2011; online 20 May 2011)

In the crystal structure of the title compound, C4H6N3+·C7H7O3S, inter­molecular N—H⋯O hydrogen bonds link the cations and anions into chains along [100]. Additional stabilization is provided by weak C—H⋯O hydrogen bonds. An inter­molecular ππ stacking inter­action with a centroid–centroid distance of 3.6957 (7) Å is also observed. The H atoms of the methyl group were refined as disordered over two sets of sites with equal occupancies

Related literature

For related structures, see: Tabatabaee et al. (2010[Tabatabaee, M., Ghassemzadeh, M., Hesami, L. & Neumüller, B. (2010). Acta Cryst. E66, o1891.], 2011[Tabatabaee, M., Hesami, L., Ghassemzadeh, M. & Rotenberger, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 273-274.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·C7H7O3S

  • Mr = 267.30

  • Monoclinic, P 21 /n

  • a = 6.2567 (3) Å

  • b = 13.3756 (6) Å

  • c = 15.2512 (7) Å

  • β = 101.335 (1)°

  • V = 1251.43 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.50 × 0.36 × 0.32 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 12275 measured reflections

  • 3617 independent reflections

  • 3160 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.04

  • 3617 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.88 1.79 2.674 (1) 176
N3—H3B⋯O1i 0.88 2.03 2.835 (1) 151
N3—H3C⋯O2 0.88 2.08 2.902 (1) 155
C10—H10A⋯O3ii 0.95 2.46 3.1035 (14) 124
C11—H11A⋯O3iii 0.95 2.56 3.3629 (14) 143
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The treatment of sulfonylchloride compounds with amines at room temperature leads to the corresponding sulfonamides (Tabatabaee et al., 2010, 2011). The title compound was obtained as a side product from the reaction of 4-methylbenzenesulfonyl chloride and 2-amino-pyrimidine in CH2Cl2 under reflux conditions. The compound was formed due to the hydrolysis of 4-methylbenzenesulfonyl chloride to 4-methylbenzenesulfonic acid and an H atom being transferred to an imine nitrogen atom of 2-amino-pyrimidine molecule. The molecular structure of the title compound is shown in Fig. 1. The H atoms of the methyl group are disordered over two sets of sites with equal occupancies. In the crystal, cations and anions are linked into one dimensional chains parallel to [100] (Fig. 2) by intermolecular N—H··· O hydrogen bonds and further stabilization is provided by weak C—H··· O hydrogen bonds. There is an intermolecular π···π stacking interaction involving pyrimidine and benzene rings with a centroid to centroid distance of 3.6957 (7)Å.

Related literature top

For related structures, see: Tabatabaee et al. (2010, 2011).

Experimental top

A solution of 2-amino-pyrimidine (0.095 g, 1 mmol) in CH2Cl2 (30 ml) was treated with 4-methylbenzenesulfonyl chloride (0.190 g, 1 mmol) and the pH of reaction mixture was adjusted to 8 with sodium carbonate solution (10%). The reaction mixture was refluxed. the solid crude was filtered. The clear filtrate solution was kept at 277K to give the colorless single crystals of the title compound.

Refinement top

All hydrogen atoms were visible in difference Fourier maps but were subsequently placed in calculated positions with C-H = 0.95-0.98Å and N-H = 0.88Å and refined in a riding-model approximation with Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 50% probabilty level.
[Figure 2] Fig. 2. Part of a hydrogen-bonded (dashed lines ) chain along [100].
2-Aminopyrimidin-1-ium 4-methylbenzenesulfonate top
Crystal data top
C4H6N3+·C7H7O3SF(000) = 560
Mr = 267.30Dx = 1.419 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5926 reflections
a = 6.2567 (3) Åθ = 2.7–34.6°
b = 13.3756 (6) ŵ = 0.26 mm1
c = 15.2512 (7) ÅT = 100 K
β = 101.335 (1)°Prism, colourless
V = 1251.43 (10) Å30.50 × 0.36 × 0.32 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3160 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
ω scansh = 88
12275 measured reflectionsk = 1818
3617 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.3689P]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C4H6N3+·C7H7O3SV = 1251.43 (10) Å3
Mr = 267.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2567 (3) ŵ = 0.26 mm1
b = 13.3756 (6) ÅT = 100 K
c = 15.2512 (7) Å0.50 × 0.36 × 0.32 mm
β = 101.335 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
3160 reflections with I > 2σ(I)
12275 measured reflectionsRint = 0.021
3617 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
3617 reflectionsΔρmin = 0.38 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.28924 (4)0.172328 (19)0.105904 (16)0.01392 (8)
O10.28421 (13)0.21695 (6)0.19437 (5)0.01877 (17)
O20.51293 (13)0.15402 (6)0.09590 (5)0.01855 (16)
O30.14528 (13)0.08711 (6)0.08830 (5)0.01966 (17)
C10.18525 (17)0.26582 (8)0.02687 (7)0.01501 (19)
C20.03778 (18)0.27159 (8)0.00789 (7)0.0183 (2)
H2A0.13490.22440.00960.022*
C30.1167 (2)0.34700 (9)0.06827 (8)0.0220 (2)
H3A0.26870.35090.09190.026*
C40.0232 (2)0.41735 (9)0.09488 (8)0.0236 (2)
C50.2456 (2)0.41027 (9)0.05918 (8)0.0254 (2)
H5A0.34290.45760.07640.031*
C60.3277 (2)0.33500 (9)0.00123 (8)0.0213 (2)
H6A0.47970.33090.02480.026*
C70.0643 (3)0.49831 (10)0.16093 (9)0.0348 (3)
H7A0.19920.47520.19970.052*0.50
H7B0.04380.51400.19750.052*0.50
H7C0.09440.55840.12860.052*0.50
H7D0.03260.55650.15080.052*0.50
H7E0.21030.51780.15300.052*0.50
H7F0.07210.47340.22190.052*0.50
N10.61962 (15)0.31572 (7)0.29233 (6)0.01640 (18)
H1A0.51210.28040.26120.020*
N20.99877 (15)0.33985 (7)0.33945 (6)0.01665 (18)
N30.86604 (16)0.21369 (8)0.23970 (7)0.0210 (2)
H3B1.00080.19610.23820.025*
H3C0.75600.18080.20760.025*
C80.82865 (17)0.29000 (8)0.29050 (7)0.0154 (2)
C90.57354 (18)0.39454 (8)0.34102 (7)0.0177 (2)
H9A0.42640.41160.34150.021*
C100.73953 (18)0.44934 (8)0.38933 (7)0.0179 (2)
H10A0.71320.50640.42280.022*
C110.95194 (17)0.41679 (8)0.38686 (7)0.0170 (2)
H11A1.07010.45250.42170.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01196 (12)0.01471 (13)0.01493 (13)0.00058 (8)0.00229 (9)0.00101 (8)
O10.0151 (4)0.0257 (4)0.0156 (3)0.0016 (3)0.0034 (3)0.0040 (3)
O20.0135 (4)0.0209 (4)0.0214 (4)0.0022 (3)0.0038 (3)0.0016 (3)
O30.0186 (4)0.0161 (4)0.0234 (4)0.0036 (3)0.0017 (3)0.0011 (3)
C10.0159 (5)0.0137 (4)0.0158 (4)0.0009 (4)0.0039 (4)0.0015 (4)
C20.0171 (5)0.0189 (5)0.0186 (5)0.0003 (4)0.0028 (4)0.0008 (4)
C30.0225 (5)0.0222 (5)0.0200 (5)0.0044 (4)0.0006 (4)0.0002 (4)
C40.0361 (7)0.0172 (5)0.0175 (5)0.0044 (5)0.0056 (4)0.0002 (4)
C50.0324 (6)0.0185 (5)0.0274 (6)0.0025 (5)0.0107 (5)0.0029 (4)
C60.0191 (5)0.0203 (5)0.0252 (5)0.0023 (4)0.0063 (4)0.0008 (4)
C70.0563 (9)0.0225 (6)0.0245 (6)0.0088 (6)0.0054 (6)0.0064 (5)
N10.0124 (4)0.0201 (4)0.0166 (4)0.0024 (3)0.0026 (3)0.0015 (3)
N20.0138 (4)0.0189 (4)0.0169 (4)0.0014 (3)0.0021 (3)0.0005 (3)
N30.0145 (4)0.0258 (5)0.0231 (5)0.0018 (4)0.0043 (3)0.0087 (4)
C80.0138 (5)0.0182 (5)0.0145 (4)0.0008 (4)0.0035 (3)0.0012 (4)
C90.0163 (5)0.0193 (5)0.0180 (5)0.0028 (4)0.0048 (4)0.0016 (4)
C100.0191 (5)0.0164 (5)0.0186 (5)0.0010 (4)0.0044 (4)0.0000 (4)
C110.0165 (5)0.0169 (5)0.0168 (5)0.0029 (4)0.0013 (4)0.0003 (4)
Geometric parameters (Å, º) top
S1—O31.4449 (8)C7—H7C0.9800
S1—O21.4580 (8)C7—H7D0.9800
S1—O11.4814 (8)C7—H7E0.9800
S1—C11.7697 (11)C7—H7F0.9800
C1—C61.3930 (15)N1—C91.3529 (14)
C1—C21.3941 (15)N1—C81.3579 (14)
C2—C31.3895 (16)N1—H1A0.8800
C2—H2A0.9500N2—C111.3233 (14)
C3—C41.3985 (18)N2—C81.3500 (14)
C3—H3A0.9500N3—C81.3296 (14)
C4—C51.3946 (19)N3—H3B0.8800
C4—C71.5067 (17)N3—H3C0.8800
C5—C61.3929 (17)C9—C101.3631 (15)
C5—H5A0.9500C9—H9A0.9500
C6—H6A0.9500C10—C111.4060 (15)
C7—H7A0.9800C10—H10A0.9500
C7—H7B0.9800C11—H11A0.9500
O3—S1—O2115.10 (5)H7B—C7—H7D56.3
O3—S1—O1111.29 (5)H7C—C7—H7D56.3
O2—S1—O1110.83 (5)C4—C7—H7E109.5
O3—S1—C1107.38 (5)H7A—C7—H7E56.3
O2—S1—C1106.22 (5)H7B—C7—H7E141.1
O1—S1—C1105.36 (5)H7C—C7—H7E56.3
C6—C1—C2120.29 (10)H7D—C7—H7E109.5
C6—C1—S1119.39 (8)C4—C7—H7F109.5
C2—C1—S1120.31 (8)H7A—C7—H7F56.3
C3—C2—C1119.41 (11)H7B—C7—H7F56.3
C3—C2—H2A120.3H7C—C7—H7F141.1
C1—C2—H2A120.3H7D—C7—H7F109.5
C2—C3—C4121.30 (11)H7E—C7—H7F109.5
C2—C3—H3A119.4C9—N1—C8121.24 (9)
C4—C3—H3A119.4C9—N1—H1A119.4
C5—C4—C3118.33 (11)C8—N1—H1A119.4
C5—C4—C7120.89 (12)C11—N2—C8116.81 (10)
C3—C4—C7120.78 (12)C8—N3—H3B120.0
C6—C5—C4121.14 (11)C8—N3—H3C120.0
C6—C5—H5A119.4H3B—N3—H3C120.0
C4—C5—H5A119.4N3—C8—N2119.44 (10)
C5—C6—C1119.52 (11)N3—C8—N1119.13 (10)
C5—C6—H6A120.2N2—C8—N1121.43 (10)
C1—C6—H6A120.2N1—C9—C10119.59 (10)
C4—C7—H7A109.5N1—C9—H9A120.2
C4—C7—H7B109.5C10—C9—H9A120.2
H7A—C7—H7B109.5C9—C10—C11116.28 (10)
C4—C7—H7C109.5C9—C10—H10A121.9
H7A—C7—H7C109.5C11—C10—H10A121.9
H7B—C7—H7C109.5N2—C11—C10124.57 (10)
C4—C7—H7D109.5N2—C11—H11A117.7
H7A—C7—H7D141.1C10—C11—H11A117.7
O3—S1—C1—C6152.15 (9)C7—C4—C5—C6179.36 (12)
O2—S1—C1—C628.51 (10)C4—C5—C6—C10.34 (18)
O1—S1—C1—C689.14 (9)C2—C1—C6—C50.24 (17)
O3—S1—C1—C229.29 (10)S1—C1—C6—C5178.32 (9)
O2—S1—C1—C2152.94 (9)C11—N2—C8—N3178.22 (10)
O1—S1—C1—C289.42 (9)C11—N2—C8—N12.14 (15)
C6—C1—C2—C30.06 (16)C9—N1—C8—N3178.11 (10)
S1—C1—C2—C3178.49 (9)C9—N1—C8—N22.25 (16)
C1—C2—C3—C40.03 (17)C8—N1—C9—C100.06 (16)
C2—C3—C4—C50.07 (18)N1—C9—C10—C111.95 (15)
C2—C3—C4—C7179.54 (11)C8—N2—C11—C100.04 (16)
C3—C4—C5—C60.25 (18)C9—C10—C11—N22.07 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.792.674 (1)176
N3—H3B···O1i0.882.032.835 (1)151
N3—H3C···O20.882.082.902 (1)155
C10—H10A···O3ii0.952.463.1035 (14)124
C11—H11A···O3iii0.952.563.3629 (14)143
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H6N3+·C7H7O3S
Mr267.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.2567 (3), 13.3756 (6), 15.2512 (7)
β (°) 101.335 (1)
V3)1251.43 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.50 × 0.36 × 0.32
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12275, 3617, 3160
Rint0.021
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.04
No. of reflections3617
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.792.674 (1)176
N3—H3B···O1i0.882.032.835 (1)151
N3—H3C···O20.882.082.902 (1)155
C10—H10A···O3ii0.952.463.1035 (14)124
C11—H11A···O3iii0.952.563.3629 (14)143
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Hesami, L. & Neumüller, B. (2010). Acta Cryst. E66, o1891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Hesami, L., Ghassemzadeh, M. & Rotenberger, A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 273–274.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds