organic compounds
2-Amino-3-carboxypyrazin-1-ium dihydrogen phosphate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr
In the 5H6N3O2+·H2PO4−, the dihydrogen phosphate anions are linked through short O—H⋯O hydrogen bonds, forming infinite double chains running parallel to the b axis. Centrosymetric N—H⋯O hydrogen-bonded cationic dimers form bridges between these chains by means of intermolecular N—H⋯O and O—H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (100) in which R33(12), R43(10) R22(8) and C(4) graph-set motifs are generated. Weak intermolecular C—H⋯O hydrogen bonds connect these layers, forming a three-dimensional network.
of the title compound, CRelated literature
For hybrid compounds based on N-heterocycles, see: Akriche & Rzaigui (2007); Berrah et al. (2011a,b,c); Ouakkaf et al. (2011). For related dihydrogenphosphte compounds, see: Lin et al. (2009); Shao et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811017521/lh5248sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811017521/lh5248Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811017521/lh5248Isup3.cml
The title compound was synthesized by reacting 3-amino-pyrazine-2-carboxylic acid with phosphoricic acid in a solution of equal volume of H2O and CH3OH. Slow evaporation leads to well crystallized colourless needles.
H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of the title compound. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Part of the crystal structure viewed along [001] showing infinite double chains. Hydrogen bonds are shown as dashed lines. | |
Fig. 3. A view parallel to (010) showing cationic dimers and how they link double infinite anionic chains. C—H···O contacts have been omitted for clarity. | |
Fig. 4. The two-dimensional packing. Hydrogen bonds are shown as dashed lines. |
C5H6N3O2+·H2PO4− | F(000) = 488 |
Mr = 237.11 | Dx = 1.794 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4062 reflections |
a = 8.6076 (5) Å | θ = 3.2–27.5° |
b = 4.6703 (3) Å | µ = 0.33 mm−1 |
c = 21.9431 (13) Å | T = 150 K |
β = 95.573 (2)° | Needle, colourless |
V = 877.94 (9) Å3 | 0.45 × 0.06 × 0.04 mm |
Z = 4 |
Bruker APEXII diffractometer | 1781 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −11→7 |
Tmin = 0.898, Tmax = 0.987 | k = −6→6 |
7993 measured reflections | l = −28→28 |
2004 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.6558P] where P = (Fo2 + 2Fc2)/3 |
2004 reflections | (Δ/σ)max = 0.001 |
139 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C5H6N3O2+·H2PO4− | V = 877.94 (9) Å3 |
Mr = 237.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.6076 (5) Å | µ = 0.33 mm−1 |
b = 4.6703 (3) Å | T = 150 K |
c = 21.9431 (13) Å | 0.45 × 0.06 × 0.04 mm |
β = 95.573 (2)° |
Bruker APEXII diffractometer | 2004 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1781 reflections with I > 2σ(I) |
Tmin = 0.898, Tmax = 0.987 | Rint = 0.025 |
7993 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.39 e Å−3 |
2004 reflections | Δρmin = −0.39 e Å−3 |
139 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.86142 (15) | 0.8016 (3) | 0.90992 (6) | 0.0173 (3) | |
H1A | 0.8733 | 0.8741 | 0.8736 | 0.021* | |
H1B | 0.9191 | 0.8645 | 0.9425 | 0.021* | |
C2 | 0.75718 (17) | 0.5988 (3) | 0.91547 (6) | 0.0137 (3) | |
N3 | 0.66953 (15) | 0.5047 (3) | 0.86483 (5) | 0.0149 (3) | |
H3 | 0.6834 | 0.583 | 0.8293 | 0.018* | |
C4 | 0.56229 (17) | 0.2967 (3) | 0.86666 (7) | 0.0165 (3) | |
H4 | 0.5045 | 0.2339 | 0.83 | 0.02* | |
C5 | 0.53675 (17) | 0.1756 (3) | 0.92166 (7) | 0.0171 (3) | |
H5 | 0.4608 | 0.0288 | 0.923 | 0.02* | |
N6 | 0.61838 (15) | 0.2626 (3) | 0.97404 (6) | 0.0166 (3) | |
C7 | 0.72487 (17) | 0.4646 (3) | 0.97204 (6) | 0.0142 (3) | |
C8 | 0.81279 (17) | 0.5559 (3) | 1.03115 (7) | 0.0155 (3) | |
O9 | 0.91059 (13) | 0.7446 (2) | 1.03400 (5) | 0.0214 (3) | |
O10 | 0.77252 (13) | 0.4096 (3) | 1.07821 (5) | 0.0212 (3) | |
H10 | 0.8219 | 0.4712 | 1.1104 | 0.032* | |
P1 | 0.79097 (4) | 0.97152 (8) | 0.740127 (16) | 0.01125 (11) | |
O11 | 0.70388 (12) | 0.7004 (2) | 0.75265 (5) | 0.0161 (2) | |
O12 | 0.66950 (12) | 1.1937 (2) | 0.71167 (5) | 0.0162 (2) | |
H12 | 0.696 | 1.3588 | 0.7238 | 0.024* | |
O13 | 0.89962 (12) | 0.9251 (2) | 0.68787 (5) | 0.0183 (2) | |
H13 | 0.9697 | 0.8065 | 0.6994 | 0.027* | |
O14 | 0.88101 (12) | 1.0854 (2) | 0.79764 (5) | 0.0158 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0199 (6) | 0.0194 (7) | 0.0125 (6) | −0.0029 (5) | 0.0013 (5) | 0.0017 (5) |
C2 | 0.0139 (7) | 0.0139 (7) | 0.0134 (6) | 0.0041 (5) | 0.0019 (5) | −0.0008 (5) |
N3 | 0.0177 (6) | 0.0157 (6) | 0.0113 (6) | 0.0025 (5) | 0.0013 (5) | 0.0010 (5) |
C4 | 0.0150 (7) | 0.0166 (7) | 0.0173 (7) | 0.0029 (6) | −0.0014 (6) | −0.0021 (6) |
C5 | 0.0141 (7) | 0.0177 (7) | 0.0193 (7) | −0.0006 (6) | 0.0015 (6) | −0.0016 (6) |
N6 | 0.0160 (6) | 0.0182 (6) | 0.0158 (6) | 0.0017 (5) | 0.0027 (5) | 0.0000 (5) |
C7 | 0.0144 (7) | 0.0160 (7) | 0.0123 (6) | 0.0027 (5) | 0.0020 (5) | −0.0003 (5) |
C8 | 0.0160 (7) | 0.0172 (7) | 0.0135 (7) | 0.0028 (6) | 0.0023 (5) | −0.0006 (5) |
O9 | 0.0245 (6) | 0.0223 (6) | 0.0168 (5) | −0.0050 (5) | −0.0003 (4) | −0.0013 (4) |
O10 | 0.0233 (6) | 0.0296 (6) | 0.0106 (5) | −0.0056 (5) | 0.0011 (4) | 0.0010 (4) |
P1 | 0.01218 (19) | 0.01066 (18) | 0.01087 (18) | 0.00067 (13) | 0.00093 (13) | −0.00036 (13) |
O11 | 0.0213 (5) | 0.0112 (5) | 0.0156 (5) | −0.0021 (4) | 0.0010 (4) | −0.0006 (4) |
O12 | 0.0158 (5) | 0.0107 (5) | 0.0212 (5) | 0.0021 (4) | −0.0025 (4) | −0.0026 (4) |
O13 | 0.0182 (5) | 0.0239 (6) | 0.0132 (5) | 0.0094 (4) | 0.0034 (4) | 0.0031 (4) |
O14 | 0.0168 (5) | 0.0181 (5) | 0.0121 (5) | −0.0043 (4) | 0.0004 (4) | 0.0003 (4) |
N1—C2 | 1.319 (2) | N6—C7 | 1.319 (2) |
N1—H1A | 0.88 | C7—C8 | 1.4987 (19) |
N1—H1B | 0.88 | C8—O9 | 1.2161 (19) |
C2—N3 | 1.3543 (18) | C8—O10 | 1.3127 (18) |
C2—C7 | 1.442 (2) | O10—H10 | 0.84 |
N3—C4 | 1.343 (2) | P1—O11 | 1.5101 (11) |
N3—H3 | 0.88 | P1—O14 | 1.5120 (10) |
C4—C5 | 1.370 (2) | P1—O12 | 1.5597 (11) |
C4—H4 | 0.95 | P1—O13 | 1.5636 (11) |
C5—N6 | 1.3503 (19) | O12—H12 | 0.84 |
C5—H5 | 0.95 | O13—H13 | 0.84 |
C2—N1—H1A | 120 | N6—C7—C2 | 122.16 (13) |
C2—N1—H1B | 120 | N6—C7—C8 | 117.96 (13) |
H1A—N1—H1B | 120 | C2—C7—C8 | 119.88 (13) |
N1—C2—N3 | 119.16 (13) | O9—C8—O10 | 124.84 (14) |
N1—C2—C7 | 125.57 (13) | O9—C8—C7 | 122.65 (14) |
N3—C2—C7 | 115.26 (13) | O10—C8—C7 | 112.51 (13) |
C4—N3—C2 | 122.68 (13) | C8—O10—H10 | 109.5 |
C4—N3—H3 | 118.7 | O11—P1—O14 | 111.49 (6) |
C2—N3—H3 | 118.7 | O11—P1—O12 | 107.77 (6) |
N3—C4—C5 | 119.62 (14) | O14—P1—O12 | 111.69 (6) |
N3—C4—H4 | 120.2 | O11—P1—O13 | 111.11 (6) |
C5—C4—H4 | 120.2 | O14—P1—O13 | 111.48 (6) |
N6—C5—C4 | 120.73 (14) | O12—P1—O13 | 102.94 (6) |
N6—C5—H5 | 119.6 | P1—O12—H12 | 109.5 |
C4—C5—H5 | 119.6 | P1—O13—H13 | 109.5 |
C7—N6—C5 | 119.53 (13) | ||
N1—C2—N3—C4 | 179.23 (13) | N3—C2—C7—N6 | 0.6 (2) |
C7—C2—N3—C4 | −1.4 (2) | N1—C2—C7—C8 | 0.5 (2) |
C2—N3—C4—C5 | 1.2 (2) | N3—C2—C7—C8 | −178.86 (12) |
N3—C4—C5—N6 | −0.1 (2) | N6—C7—C8—O9 | −178.37 (14) |
C4—C5—N6—C7 | −0.6 (2) | C2—C7—C8—O9 | 1.1 (2) |
C5—N6—C7—C2 | 0.4 (2) | N6—C7—C8—O10 | 1.9 (2) |
C5—N6—C7—C8 | 179.86 (13) | C2—C7—C8—O10 | −178.58 (13) |
N1—C2—C7—N6 | 179.93 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O14 | 0.88 | 1.94 | 2.8171 (17) | 171 |
N1—H1B···O9 | 0.88 | 2.09 | 2.7275 (17) | 128 |
N1—H1B···O9i | 0.88 | 2.37 | 3.0640 (19) | 136 |
N3—H3···O11 | 0.88 | 1.79 | 2.6690 (16) | 173 |
O10—H10···O13ii | 0.84 | 1.83 | 2.6591 (16) | 169 |
O12—H12···O11iii | 0.84 | 1.72 | 2.5386 (14) | 166 |
O13—H13···O14iv | 0.84 | 1.64 | 2.4634 (16) | 164 |
C4—H4···O11v | 0.95 | 2.43 | 3.3377 (19) | 160 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, y+1, z; (iv) −x+2, y−1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6N3O2+·H2PO4− |
Mr | 237.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 8.6076 (5), 4.6703 (3), 21.9431 (13) |
β (°) | 95.573 (2) |
V (Å3) | 877.94 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.45 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.898, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7993, 2004, 1781 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.079, 1.04 |
No. of reflections | 2004 |
No. of parameters | 139 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.39 |
Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O14 | 0.88 | 1.94 | 2.8171 (17) | 171 |
N1—H1B···O9 | 0.88 | 2.09 | 2.7275 (17) | 128 |
N1—H1B···O9i | 0.88 | 2.37 | 3.0640 (19) | 136 |
N3—H3···O11 | 0.88 | 1.79 | 2.6690 (16) | 173 |
O10—H10···O13ii | 0.84 | 1.83 | 2.6591 (16) | 169 |
O12—H12···O11iii | 0.84 | 1.72 | 2.5386 (14) | 166 |
O13—H13···O14iv | 0.84 | 1.64 | 2.4634 (16) | 164 |
C4—H4···O11v | 0.95 | 2.43 | 3.3377 (19) | 160 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, y+1, z; (iv) −x+2, y−1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2. |
Footnotes
‡Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.
Acknowledgements
We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.
References
Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o953–o954. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Lin, C.-H., Liu, N.-S. & Jian, F.-F. (2009). Acta Cryst. E65, o2639. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shao, Z.-D., Jiang, X., Lan, S.-M., Di, W.-J. & Liang, Y.-X. (2010). Acta Cryst. E66, o1757–o1758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In continuation of our search for new hybrids based on protonated N-heterocyclic compounds and inorganic acids we have prepared the title compound. Our recent investigation in this field has revealed the ability of N-heterocyclic derivatives to generate original networks stabilized by hydrogen bonds and has shown how anion substitution may influence the hydrogen-bonding patterns (Berrah et al., 2011a,b,c; Ouakkaf et al., 2011).
The asymmetric unit of the title conpound compound contains one 2-amino-3-carboxypyrazin-1-ium cation and one dihydrogen phosphate anion (Fig. 1). Both entities display geometry similar to that reported in related compounds (Akriche & Rzaigui 2007; Berrah et al., 2011b; Shao et al., 2010). dihydrogen phosphate anions linked through strong O—H···O hydrogen bonds (Table 1), form double infinite chains running parallel to the b axis (Fig. 2). Similar chains were previously observed in related compounds (Akriche & Rzaigui 2007; Lin et al., 2009). 2-Amino-3-carboxypyrazin-1-ium centrosymetric dimers form bridges between these chains by means of N—H···O and O—H···O hydrogen bonds (Fig. 3) leading to a two-dimensional network (Fig. 4) where R33(12), R34(10), R22(8) and C(4) graph-set motifs are generated (Fig. 2 and Fig. 3)(Etter et al., 1990; Bernstein et al., 1995). Further stabilization is provided by intermolecular C—H···O contacts.