organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(1-methyl-1H-benzimidazol-2-yl)-2-oxa­propane

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wuhuilu@163.com

(Received 3 May 2011; accepted 12 May 2011; online 20 May 2011)

In the title mol­ecule, C18H18N4O, the dihedral angle between the mean planes of the two benzimidazole ring systems is 61.5 (1)°.

Related literature

For biological applications of benzimidazoles and bis-benzimidazoles, see: Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Holland & Tolman (2000[Holland, P. L. & Tolman, W. B. (2000). J. Am. Chem. Soc. 122, 6331-6332]). For related structures, see: Chen et al. (2009[Chen, Y., Guo, J., Yun, R. & Wu, H. (2009). Acta Cryst. E65, o948.]); Wu et al. (2009[Wu, H., Yun, R., Wang, K., Huang, X. & Sun, Q. (2009). Acta Cryst. E65, o1014.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4O

  • Mr = 306.36

  • Monoclinic, P 21 /n

  • a = 6.634 (6) Å

  • b = 16.217 (15) Å

  • c = 14.457 (13) Å

  • β = 101.102 (10)°

  • V = 1526 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.982

  • 10239 measured reflections

  • 2668 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.169

  • S = 1.05

  • 2668 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazole core is of interest because of its diverse biological activies, and it is a well known in medicinal chemistry (Horton et al., 2003). In bioinorganic chemistry, bis-benzimidazoles have been used extensively to help model the active sites of metalloproteins (Holland & Tolman, 2000). The crystal structures of 1,3-bis(1-benzimidazol-2-yl)-2-oxopropane and 1,3-bis(1-benzylbenzimidazol-2-yl)-2-oxopropane have been reported previously (Wu et al. 2009; Chen et al.. 2009). The molecular structure of the title compound is shown in Fig.1. The dihedral angle between the mean planes of the two benzimidazole ring systems is 61.5 (1) Å.

Related literature top

For biological applications of benzimidazoles and bis-benzimidazoles, see: Horton et al. (2003); Holland & Tolman (2000). For related structures, see: Chen et al. (2009); Wu et al. (2009).

Experimental top

A solution of 5.56 g (20 mmol) of 1.3-bis(benzimidazol-2-yl)-2-oxpropane with 1.56 g (40 mmol) potassium in the 150 ml tetrahydrofuran followed by addition 5.68 g (40 mmol) methyl iodide was concentrated and recrystallized from methanol, formimg white blocks suitable for X-ray diffraction studies.(found: C, 70.50; H, 5.83; N, 18.34. Calad.: C, 70.57; H, 5.92; N, 18.29)

Refinement top

All H atoms were found in difference electron maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93 to 0.97 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
1,3-Bis(1-methyl-1H-benzimidazol-2-yl)-2-oxapropane top
Crystal data top
C18H18N4OF(000) = 648
Mr = 306.36Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1941 reflections
a = 6.634 (6) Åθ = 2.5–23.0°
b = 16.217 (15) ŵ = 0.09 mm1
c = 14.457 (13) ÅT = 296 K
β = 101.102 (10)°Block, white
V = 1526 (2) Å30.26 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2668 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.978, Tmax = 0.982k = 1719
10239 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.062P)2 + 1.2125P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2668 reflectionsΔρmax = 0.19 e Å3
210 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (4)
Crystal data top
C18H18N4OV = 1526 (2) Å3
Mr = 306.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.634 (6) ŵ = 0.09 mm1
b = 16.217 (15) ÅT = 296 K
c = 14.457 (13) Å0.26 × 0.24 × 0.21 mm
β = 101.102 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
2668 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1846 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.057
10239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2668 reflectionsΔρmin = 0.19 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1874 (3)0.23663 (13)0.39791 (14)0.0471 (6)
N30.4241 (4)0.11107 (15)0.52270 (17)0.0410 (6)
N10.2920 (4)0.23299 (15)0.19655 (17)0.0439 (6)
C110.2170 (4)0.12133 (18)0.5023 (2)0.0407 (7)
N20.0371 (4)0.19270 (17)0.16948 (18)0.0489 (7)
C120.2789 (5)0.05940 (18)0.6348 (2)0.0427 (7)
C80.2615 (5)0.18872 (19)0.1131 (2)0.0437 (8)
N40.1227 (4)0.09232 (16)0.56732 (18)0.0467 (7)
C170.4691 (5)0.07179 (18)0.6089 (2)0.0410 (7)
C30.0574 (5)0.1645 (2)0.0974 (2)0.0463 (8)
C20.1090 (5)0.23293 (19)0.2256 (2)0.0424 (7)
C160.6514 (5)0.0441 (2)0.6624 (2)0.0524 (9)
H160.77680.05310.64440.063*
C180.5751 (5)0.1358 (2)0.4666 (2)0.0505 (8)
H18A0.52390.12280.40150.076*
H18B0.70140.10670.48820.076*
H18C0.59900.19400.47310.076*
C130.2710 (6)0.0182 (2)0.7183 (2)0.0553 (9)
H130.14660.01020.73770.066*
C100.1078 (5)0.1576 (2)0.4120 (2)0.0482 (8)
H10A0.12350.12170.36020.058*
H10B0.03760.16200.41290.058*
C150.6381 (6)0.0023 (2)0.7440 (2)0.0610 (10)
H150.75740.01790.78180.073*
C10.0810 (5)0.2749 (2)0.3144 (2)0.0494 (8)
H1A0.12790.33150.31320.059*
H1B0.06430.27630.31620.059*
C40.0213 (6)0.1176 (2)0.0180 (2)0.0612 (10)
H4A0.15790.10070.00550.073*
C70.3946 (6)0.1688 (2)0.0531 (2)0.0550 (9)
H70.53100.18580.06450.066*
C50.1093 (7)0.0971 (2)0.0410 (2)0.0675 (11)
H50.06010.06540.09420.081*
C90.4856 (5)0.2688 (2)0.2415 (3)0.0614 (10)
H9A0.46930.29590.29860.092*
H9B0.52900.30820.19980.092*
H9C0.58710.22610.25590.092*
C60.3114 (7)0.1222 (2)0.0240 (2)0.0657 (11)
H60.39430.10700.06620.079*
C140.4501 (6)0.0104 (2)0.7712 (2)0.0616 (10)
H140.44650.03910.82660.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (12)0.0464 (13)0.0446 (12)0.0009 (10)0.0075 (10)0.0015 (10)
N30.0392 (14)0.0429 (14)0.0424 (14)0.0022 (11)0.0119 (11)0.0009 (11)
N10.0427 (15)0.0459 (15)0.0439 (15)0.0012 (12)0.0102 (11)0.0036 (12)
C110.0399 (17)0.0407 (17)0.0426 (17)0.0002 (14)0.0106 (13)0.0045 (14)
N20.0466 (16)0.0534 (17)0.0468 (15)0.0040 (13)0.0090 (12)0.0063 (13)
C120.0520 (19)0.0372 (17)0.0407 (17)0.0057 (14)0.0134 (14)0.0051 (13)
C80.053 (2)0.0408 (18)0.0398 (17)0.0079 (15)0.0153 (14)0.0134 (14)
N40.0443 (15)0.0505 (16)0.0479 (15)0.0059 (12)0.0151 (12)0.0048 (12)
C170.0447 (17)0.0352 (17)0.0423 (17)0.0015 (14)0.0063 (13)0.0076 (13)
C30.0506 (19)0.0472 (19)0.0399 (17)0.0044 (15)0.0057 (14)0.0075 (14)
C20.0401 (17)0.0438 (18)0.0433 (17)0.0076 (14)0.0075 (14)0.0079 (14)
C160.0474 (19)0.048 (2)0.058 (2)0.0011 (15)0.0009 (15)0.0067 (16)
C180.0440 (18)0.053 (2)0.059 (2)0.0054 (16)0.0199 (15)0.0034 (16)
C130.066 (2)0.054 (2)0.050 (2)0.0105 (17)0.0214 (17)0.0032 (16)
C100.0456 (18)0.054 (2)0.0453 (18)0.0070 (16)0.0084 (14)0.0050 (15)
C150.070 (2)0.048 (2)0.057 (2)0.0137 (18)0.0074 (18)0.0001 (17)
C10.055 (2)0.0468 (19)0.0469 (18)0.0086 (16)0.0113 (15)0.0040 (15)
C40.072 (2)0.055 (2)0.052 (2)0.0047 (19)0.0003 (18)0.0031 (17)
C70.065 (2)0.052 (2)0.052 (2)0.0065 (17)0.0228 (17)0.0138 (17)
C50.102 (3)0.059 (2)0.042 (2)0.002 (2)0.014 (2)0.0020 (17)
C90.051 (2)0.070 (2)0.065 (2)0.0092 (18)0.0124 (17)0.0022 (19)
C60.095 (3)0.060 (2)0.050 (2)0.014 (2)0.032 (2)0.0097 (18)
C140.089 (3)0.049 (2)0.0462 (19)0.014 (2)0.0103 (19)0.0023 (16)
Geometric parameters (Å, º) top
O1—C101.416 (4)C18—H18A0.9600
O1—C11.419 (4)C18—H18B0.9600
N3—C111.359 (4)C18—H18C0.9600
N3—C171.380 (4)C13—C141.364 (5)
N3—C181.461 (4)C13—H130.9300
N1—C21.359 (4)C10—H10A0.9700
N1—C81.385 (4)C10—H10B0.9700
N1—C91.445 (4)C15—C141.394 (5)
C11—N41.313 (4)C15—H150.9300
C11—C101.486 (4)C1—H1A0.9700
N2—C21.311 (4)C1—H1B0.9700
N2—C31.392 (4)C4—C51.369 (5)
C12—N41.386 (4)C4—H4A0.9300
C12—C131.390 (4)C7—C61.372 (5)
C12—C171.398 (4)C7—H70.9300
C8—C31.386 (4)C5—C61.377 (5)
C8—C71.389 (4)C5—H50.9300
C17—C161.380 (4)C9—H9A0.9600
C3—C41.393 (5)C9—H9B0.9600
C2—C11.497 (4)C9—H9C0.9600
C16—C151.378 (5)C6—H60.9300
C16—H160.9300C14—H140.9300
C10—O1—C1112.4 (2)C12—C13—H13120.8
C11—N3—C17106.7 (2)O1—C10—C11110.6 (2)
C11—N3—C18128.2 (3)O1—C10—H10A109.5
C17—N3—C18125.1 (3)C11—C10—H10A109.5
C2—N1—C8106.2 (2)O1—C10—H10B109.5
C2—N1—C9129.1 (3)C11—C10—H10B109.5
C8—N1—C9124.6 (3)H10A—C10—H10B108.1
N4—C11—N3113.7 (3)C16—C15—C14121.5 (3)
N4—C11—C10123.5 (3)C16—C15—H15119.2
N3—C11—C10122.7 (3)C14—C15—H15119.2
C2—N2—C3103.9 (3)O1—C1—C2114.0 (3)
N4—C12—C13130.4 (3)O1—C1—H1A108.7
N4—C12—C17110.3 (3)C2—C1—H1A108.7
C13—C12—C17119.3 (3)O1—C1—H1B108.7
N1—C8—C3105.2 (3)C2—C1—H1B108.7
N1—C8—C7131.3 (3)H1A—C1—H1B107.6
C3—C8—C7123.4 (3)C5—C4—C3117.7 (4)
C11—N4—C12104.3 (3)C5—C4—H4A121.2
N3—C17—C16132.2 (3)C3—C4—H4A121.2
N3—C17—C12105.0 (3)C6—C7—C8115.5 (3)
C16—C17—C12122.8 (3)C6—C7—H7122.3
C8—C3—N2110.6 (3)C8—C7—H7122.3
C8—C3—C4119.2 (3)C4—C5—C6121.9 (4)
N2—C3—C4130.2 (3)C4—C5—H5119.0
N2—C2—N1114.1 (3)C6—C5—H5119.0
N2—C2—C1123.9 (3)N1—C9—H9A109.5
N1—C2—C1122.0 (3)N1—C9—H9B109.5
C15—C16—C17116.6 (3)H9A—C9—H9B109.5
C15—C16—H16121.7N1—C9—H9C109.5
C17—C16—H16121.7H9A—C9—H9C109.5
N3—C18—H18A109.5H9B—C9—H9C109.5
N3—C18—H18B109.5C7—C6—C5122.3 (3)
H18A—C18—H18B109.5C7—C6—H6118.9
N3—C18—H18C109.5C5—C6—H6118.9
H18A—C18—H18C109.5C13—C14—C15121.4 (3)
H18B—C18—H18C109.5C13—C14—H14119.3
C14—C13—C12118.4 (3)C15—C14—H14119.3
C14—C13—H13120.8

Experimental details

Crystal data
Chemical formulaC18H18N4O
Mr306.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.634 (6), 16.217 (15), 14.457 (13)
β (°) 101.102 (10)
V3)1526 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10239, 2668, 1846
Rint0.057
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.169, 1.05
No. of reflections2668
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support and a grant from the `Qing Lan' Talent Engineering Funds and the Students' Science and Technology Innovation Funds (grant No. DXS2011–002) of Lanzhou Jiaotong University. A grant from the Middle-Young Age Science Foundation (grant No. 3YS061-A25–023) and the `Long Yuan Qing Nian' of Gansu Province is also acknowledged.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Guo, J., Yun, R. & Wu, H. (2009). Acta Cryst. E65, o948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolland, P. L. & Tolman, W. B. (2000). J. Am. Chem. Soc. 122, 6331–6332  CrossRef CAS Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Yun, R., Wang, K., Huang, X. & Sun, Q. (2009). Acta Cryst. E65, o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds