organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzotriazolium picrate

aYun Nan Chemical Research Institute, Yun Tian Hua Group, Kunming 650028, People's Republic of China
*Correspondence e-mail: ji_liji@126.com

(Received 8 May 2011; accepted 14 May 2011; online 20 May 2011)

In the crystal structure of the title compound, C6H6N3+·C6H2N3O7, anions and cations are linked into chains along [010] by inter­molecular N—H⋯O hydrogen bonds. These chains are further stabilized by weak C—H⋯O hydrogen bonds and ππ stacking inter­actions with a centroid–centroid distance of 3.908 (1) Å.

Related literature

For applications of imidazolium-based picrate salts, see: Sikder & Sikder (2004[Sikder, A. K. & Sikder, N. J. (2004). J. Hazard. Mater. A, 112, 1-15.]). For related structures, see: Jin et al. (2008[Jin, C.-M., Wu, L.-Y., Lu, X.-X. & Hu, J.-J. (2008). Acta Cryst. E64, o693.]); Hashizume et al. (2001[Hashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). Acta Cryst. C57, 1067-1072.]); Li (2007[Li, J. (2007). Acta Cryst. E63, o4470.]); Moreno-Fuquen et al. (2011[Moreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.]); Pi et al. (2009[Pi, M., Liu, X.-L., Xu, J.-J. & Jin, C.-M. (2009). Acta Cryst. E65, o2386.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N3+·C6H2N3O7

  • Mr = 348.24

  • Monoclinic, P 21 /n

  • a = 14.4113 (15) Å

  • b = 3.7608 (4) Å

  • c = 24.941 (3) Å

  • β = 90.598 (2)°

  • V = 1351.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.35 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.991

  • 10116 measured reflections

  • 2793 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.160

  • S = 1.04

  • 2793 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1i 0.85 (3) 2.04 (3) 2.799 (3) 148 (3)
N4—H4⋯O2i 0.85 (3) 2.16 (3) 2.791 (3) 131 (3)
N6—H6⋯O1 0.94 (3) 1.87 (3) 2.770 (3) 160 (3)
N6—H6⋯O6 0.94 (3) 2.48 (3) 3.090 (3) 123 (2)
C8—H8⋯O2i 0.93 2.57 3.148 (4) 121
C11—H11⋯O6 0.93 2.56 3.200 (4) 127
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Imidazolium-based picrate salts are good candidates for energetic materials (Sikder and Sikder, 2004). Herein we present the crystal structure of the title compound (I) .

The asymmetric unit of the title compound is shown in Fig. 1. During the preparation a phenolic proton was transfered to a triazole nitrogen atom, forming the 1:1 organic salt. In the picrate anion, the bond distances of C1—O1 = 1.251 (3) Å, C1—C2= 1.446 (4)Å and C1—C6 = 1.454 (4)Å may be affected by the withdrawing electron effects of the three nitro groups and are comparable to those in some related structures (Moreno-Fuquen et al., 2011; Pi et al., 2009; Jin et al., 2008; Li, 2007).

In the crystal, the components are linked by a combination of four N—H···O and two C—H···O hydrogen bonds into a one-dimensional structure along [010] which is further stabilized by one ππ interaction between symmetry-related triazole and benzene rings [Cg1—Cg2iii = 3.908 (1) Å, symmetry code (iii): x, 1 + y, z where Cg1 is the centroid of the triazole ring and Cg2 is the centroid defined by atoms C7—C12, respectively] (Fig.2). The crystal structure also contains a short N···N contact ca. 2.89Å. This type of contact is also seen in benzotriazole-3-nitrobenzoic acid (Hashizume et al., 2001).

Related literature top

For applications of imidazolium-based picrate salts, see: Sikder & Sikder (2004). For related structures, see: Jin et al. (2008); Hashizume et al. (2001); Li (2007); Moreno-Fuquen et al. (2011); Pi et al. (2009).

Experimental top

A mixture of benztriazole (0.238 g, 2 mmol) and picric acid (0.458 g, 2 mmol) was dissolved in 30 ml water at ambient condition. The resultant solution was allowed to stand for two weeks. Yellow needles were obtained at the bottom of the vessel.

Refinement top

All C-bound hydrogen atoms were included in their ideal positions and refined with C—H= 0.93Å .The Uiso(H) values were set 1.2Ueq(C). The nitrogen bonded hydrogen atoms were found in the difference Fourier maps and then refined freely with Uiso(H)=1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the one-dimensional structure formed by a combination of N—H···O and C—H···O hydrogen bonds and ππ interactions (dashed lines). Hydrogen atoms not involved in the motif have been omitted for clarity.
1H-1,2,3-benzotriazol-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C6H6N3+·C6H2N3O7F(000) = 712
Mr = 348.24Dx = 1.711 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1240 reflections
a = 14.4113 (15) Åθ = 2.8–20.3°
b = 3.7608 (4) ŵ = 0.14 mm1
c = 24.941 (3) ÅT = 298 K
β = 90.598 (2)°Needle, yellow
V = 1351.7 (2) Å30.35 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2793 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
0.3° wide ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1818
Tmin = 0.941, Tmax = 0.991k = 44
10116 measured reflectionsl = 2831
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H6N3+·C6H2N3O7V = 1351.7 (2) Å3
Mr = 348.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4113 (15) ŵ = 0.14 mm1
b = 3.7608 (4) ÅT = 298 K
c = 24.941 (3) Å0.35 × 0.08 × 0.06 mm
β = 90.598 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1772 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.991Rint = 0.068
10116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2793 reflectionsΔρmin = 0.22 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.99963 (18)0.3370 (8)0.66441 (12)0.0292 (7)
C21.01146 (18)0.4733 (8)0.61071 (11)0.0306 (7)
C31.09520 (19)0.5092 (8)0.58563 (12)0.0339 (7)
H31.09790.60160.55110.041*
C41.17487 (18)0.4073 (8)0.61202 (12)0.0329 (7)
C51.17278 (19)0.2734 (8)0.66338 (11)0.0318 (7)
H51.22730.20560.68090.038*
C61.08877 (19)0.2420 (8)0.68823 (11)0.0298 (7)
N10.93044 (16)0.5892 (7)0.57961 (10)0.0359 (6)
N21.26389 (18)0.4342 (8)0.58494 (12)0.0447 (7)
N31.09156 (17)0.1027 (7)0.74265 (10)0.0365 (6)
C70.82043 (17)0.5020 (7)0.87509 (12)0.0282 (7)
C80.8186 (2)0.4915 (8)0.93112 (12)0.0377 (8)
H80.76720.56500.95040.045*
C90.8973 (2)0.3662 (9)0.95568 (12)0.0412 (8)
H90.89970.35550.99290.049*
C100.9752 (2)0.2525 (9)0.92626 (13)0.0408 (8)
H101.02720.17130.94490.049*
C110.97677 (19)0.2573 (8)0.87192 (12)0.0365 (8)
H111.02810.18090.85280.044*
C120.89671 (18)0.3838 (8)0.84644 (11)0.0291 (7)
N40.75692 (16)0.6019 (7)0.83701 (10)0.0347 (6)
H40.702 (2)0.678 (9)0.8423 (12)0.042*
N50.78784 (16)0.5608 (7)0.78832 (10)0.0388 (7)
N60.87157 (16)0.4287 (7)0.79375 (10)0.0354 (6)
H60.896 (2)0.343 (8)0.7615 (13)0.043*
O10.92425 (12)0.3151 (6)0.68863 (8)0.0385 (6)
O20.85380 (14)0.4837 (7)0.59216 (10)0.0604 (8)
O30.94256 (15)0.7832 (7)0.54123 (10)0.0577 (7)
O41.26640 (16)0.6034 (8)0.54315 (11)0.0691 (8)
O51.33151 (15)0.2909 (8)0.60522 (10)0.0625 (8)
O61.02722 (16)0.0819 (6)0.75823 (9)0.0497 (6)
O71.15869 (17)0.1753 (8)0.77088 (10)0.0642 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (14)0.0287 (17)0.0316 (17)0.0046 (12)0.0038 (12)0.0064 (13)
C20.0299 (15)0.0319 (17)0.0301 (17)0.0041 (12)0.0013 (12)0.0065 (13)
C30.0373 (16)0.0361 (18)0.0284 (17)0.0073 (14)0.0062 (13)0.0048 (14)
C40.0278 (15)0.0390 (18)0.0320 (17)0.0041 (13)0.0066 (12)0.0071 (14)
C50.0276 (15)0.0345 (17)0.0332 (18)0.0027 (12)0.0003 (13)0.0070 (14)
C60.0340 (15)0.0298 (17)0.0255 (16)0.0003 (13)0.0021 (13)0.0001 (13)
N10.0351 (14)0.0390 (16)0.0337 (16)0.0006 (12)0.0004 (12)0.0026 (13)
N20.0349 (15)0.060 (2)0.0397 (17)0.0089 (14)0.0123 (13)0.0074 (15)
N30.0382 (14)0.0397 (16)0.0317 (15)0.0063 (12)0.0051 (12)0.0005 (12)
C70.0265 (14)0.0245 (16)0.0337 (17)0.0041 (12)0.0012 (12)0.0025 (13)
C80.0354 (16)0.044 (2)0.0342 (19)0.0017 (14)0.0082 (14)0.0057 (15)
C90.0470 (19)0.049 (2)0.0280 (18)0.0047 (16)0.0039 (14)0.0009 (15)
C100.0352 (16)0.047 (2)0.040 (2)0.0036 (14)0.0094 (14)0.0000 (16)
C110.0284 (15)0.0410 (19)0.040 (2)0.0030 (13)0.0030 (13)0.0049 (15)
C120.0281 (14)0.0314 (17)0.0277 (17)0.0056 (12)0.0006 (12)0.0029 (13)
N40.0254 (12)0.0407 (16)0.0381 (16)0.0031 (11)0.0025 (12)0.0029 (12)
N50.0349 (14)0.0464 (17)0.0349 (16)0.0059 (12)0.0020 (12)0.0040 (13)
N60.0336 (14)0.0434 (16)0.0294 (15)0.0026 (12)0.0024 (11)0.0062 (12)
O10.0259 (11)0.0570 (15)0.0328 (12)0.0052 (9)0.0082 (9)0.0033 (10)
O20.0279 (12)0.086 (2)0.0668 (17)0.0040 (12)0.0000 (11)0.0266 (15)
O30.0533 (15)0.0726 (19)0.0471 (16)0.0052 (13)0.0047 (12)0.0238 (14)
O40.0527 (15)0.100 (2)0.0548 (17)0.0080 (14)0.0227 (13)0.0202 (16)
O50.0281 (12)0.093 (2)0.0662 (18)0.0041 (12)0.0069 (12)0.0023 (15)
O60.0542 (14)0.0533 (16)0.0418 (14)0.0085 (12)0.0131 (11)0.0082 (12)
O70.0510 (15)0.096 (2)0.0457 (16)0.0068 (14)0.0160 (12)0.0166 (14)
Geometric parameters (Å, º) top
C1—O11.251 (3)N3—O61.225 (3)
C1—C21.446 (4)C7—N41.365 (4)
C1—C61.454 (4)C7—C121.390 (4)
C2—C31.372 (4)C7—C81.398 (4)
C2—N11.461 (4)C8—C91.366 (4)
C3—C41.372 (4)C8—H80.9300
C3—H30.9300C9—C101.413 (4)
C4—C51.377 (4)C9—H90.9300
C4—N21.459 (3)C10—C111.356 (4)
C5—C61.371 (4)C10—H100.9300
C5—H50.9300C11—C121.395 (4)
C6—N31.455 (4)C11—H110.9300
N1—O21.218 (3)C12—N61.370 (4)
N1—O31.218 (3)N4—N51.307 (3)
N2—O51.219 (3)N4—H40.85 (3)
N2—O41.222 (3)N5—N61.311 (3)
N3—O71.222 (3)N6—H60.94 (3)
O1—C1—C2125.6 (3)N4—C7—C8133.2 (3)
O1—C1—C6123.7 (3)C12—C7—C8121.8 (3)
C2—C1—C6110.7 (2)C9—C8—C7115.7 (3)
C3—C2—C1124.8 (3)C9—C8—H8122.1
C3—C2—N1115.5 (3)C7—C8—H8122.1
C1—C2—N1119.7 (2)C8—C9—C10122.1 (3)
C2—C3—C4119.3 (3)C8—C9—H9119.0
C2—C3—H3120.3C10—C9—H9119.0
C4—C3—H3120.3C11—C10—C9122.5 (3)
C3—C4—C5121.5 (3)C11—C10—H10118.8
C3—C4—N2119.6 (3)C9—C10—H10118.8
C5—C4—N2118.9 (3)C10—C11—C12115.9 (3)
C6—C5—C4118.7 (3)C10—C11—H11122.0
C6—C5—H5120.7C12—C11—H11122.0
C4—C5—H5120.7N6—C12—C7104.5 (2)
C5—C6—C1125.1 (3)N6—C12—C11133.5 (3)
C5—C6—N3115.9 (2)C7—C12—C11122.0 (3)
C1—C6—N3119.0 (2)N5—N4—C7112.4 (2)
O2—N1—O3122.4 (3)N5—N4—H4121 (2)
O2—N1—C2119.2 (3)C7—N4—H4127 (2)
O3—N1—C2118.4 (2)N4—N5—N6105.7 (2)
O5—N2—O4123.6 (3)N5—N6—C12112.3 (2)
O5—N2—C4118.7 (3)N5—N6—O1102.81 (18)
O4—N2—C4117.7 (3)C12—N6—O1144.73 (19)
O7—N3—O6122.8 (3)N5—N6—H6112.9 (19)
O7—N3—C6118.1 (3)C12—N6—H6133.3 (19)
O6—N3—C6119.1 (2)C1—O1—N6134.01 (19)
N4—C7—C12105.0 (2)
O1—C1—C2—C3177.1 (3)C5—C6—N3—O6146.4 (3)
C6—C1—C2—C30.1 (4)C1—C6—N3—O633.7 (4)
O1—C1—C2—N12.0 (4)N4—C7—C8—C9178.9 (3)
C6—C1—C2—N1179.3 (3)C12—C7—C8—C91.5 (4)
C1—C2—C3—C40.7 (5)C7—C8—C9—C100.4 (5)
N1—C2—C3—C4179.9 (3)C8—C9—C10—C110.5 (5)
C2—C3—C4—C50.7 (5)C9—C10—C11—C120.3 (5)
C2—C3—C4—N2178.1 (3)N4—C7—C12—N60.7 (3)
C3—C4—C5—C60.1 (4)C8—C7—C12—N6178.7 (3)
N2—C4—C5—C6178.7 (3)N4—C7—C12—C11179.8 (3)
C4—C5—C6—C10.6 (4)C8—C7—C12—C111.8 (4)
C4—C5—C6—N3179.3 (3)C10—C11—C12—N6179.8 (3)
O1—C1—C6—C5177.8 (3)C10—C11—C12—C70.8 (4)
C2—C1—C6—C50.5 (4)C12—C7—N4—N51.0 (3)
O1—C1—C6—N32.0 (4)C8—C7—N4—N5178.6 (3)
C2—C1—C6—N3179.3 (3)C7—N4—N5—N60.9 (3)
C3—C2—N1—O2160.8 (3)N4—N5—N6—C120.4 (3)
C1—C2—N1—O220.0 (4)N4—N5—N6—O1176.53 (19)
C3—C2—N1—O317.7 (4)C7—C12—N6—N50.2 (3)
C1—C2—N1—O3161.4 (3)C11—C12—N6—N5179.6 (3)
C3—C4—N2—O5168.3 (3)C7—C12—N6—O1175.0 (3)
C5—C4—N2—O510.5 (4)C11—C12—N6—O15.6 (6)
C3—C4—N2—O412.4 (4)C2—C1—O1—N6140.9 (3)
C5—C4—N2—O4168.8 (3)C6—C1—O1—N636.0 (4)
C5—C6—N3—O733.4 (4)N5—N6—O1—C1144.9 (3)
C1—C6—N3—O7146.5 (3)C12—N6—O1—C140.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.85 (3)2.04 (3)2.799 (3)148 (3)
N4—H4···O2i0.85 (3)2.16 (3)2.791 (3)131 (3)
N6—H6···O10.94 (3)1.87 (3)2.770 (3)160 (3)
N6—H6···O60.94 (3)2.48 (3)3.090 (3)123 (2)
C8—H8···O2i0.932.573.148 (4)121
C11—H11···O60.932.563.200 (4)127
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H6N3+·C6H2N3O7
Mr348.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.4113 (15), 3.7608 (4), 24.941 (3)
β (°) 90.598 (2)
V3)1351.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.941, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10116, 2793, 1772
Rint0.068
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.160, 1.04
No. of reflections2793
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1i0.85 (3)2.04 (3)2.799 (3)148 (3)
N4—H4···O2i0.85 (3)2.16 (3)2.791 (3)131 (3)
N6—H6···O10.94 (3)1.87 (3)2.770 (3)160 (3)
N6—H6···O60.94 (3)2.48 (3)3.090 (3)123 (2)
C8—H8···O2i0.932.573.148 (4)121
C11—H11···O60.932.563.200 (4)127
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Yuntianhua group for financially supporting this study.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashizume, D., Iegaki, M., Yasui, M., Iwasaki, F., Meng, J., Wen, Z. & Matsuura, T. (2001). Acta Cryst. C57, 1067–1072.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJin, C.-M., Wu, L.-Y., Lu, X.-X. & Hu, J.-J. (2008). Acta Cryst. E64, o693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. (2007). Acta Cryst. E63, o4470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., De Almeida Santos, R. & Aguirre, L. (2011). Acta Cryst. E67, o139.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPi, M., Liu, X.-L., Xu, J.-J. & Jin, C.-M. (2009). Acta Cryst. E65, o2386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikder, A. K. & Sikder, N. J. (2004). J. Hazard. Mater. A, 112, 1–15.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds