organic compounds
2-Bromo-2-methyl-N-p-tolylpropanamide
aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title molecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C C torsion angle = −31.2 (5)°]. In the crystal, intermolecular N—H⋯O and weak C—H⋯O hydrogen bonds link molecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.
Related literature
For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Kato et al. (1995); Pietrasik & Tsarevsky (2010). For a related structure, see: Moreno-Fuquen et al. (2011). For hydrogen-bond graph sets, see: Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536811019337/lh5254sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019337/lh5254Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811019337/lh5254Isup3.cml
The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100mL round bottom flask 4-methylaniline (3.173 mmoles, 0.340 g), triethylamine (0.635 mmol, 0.064 g) were mixed, then a solution of 2-bromo isobutiryl bromide (0.685 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M.p. 364 (1) K.
The H-atoms were placed geometrically with C—H= 0.95 Å for aromatic, C—H = 0.98 Å for methyl and Uiso(H) 1.2 and 1.5 times Ueq of the parent atom respectively. The methyl group H atoms are disordered over two sets of sites with equal occupancy.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).C11H14BrNO | Dx = 1.473 Mg m−3 |
Mr = 256.14 | Melting point: 385(1) K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2266 reflections |
a = 10.0728 (4) Å | θ = 3.4–29.5° |
b = 11.2577 (4) Å | µ = 3.53 mm−1 |
c = 20.3670 (6) Å | T = 123 K |
V = 2309.55 (14) Å3 | Tablet, colourless |
Z = 8 | 0.25 × 0.12 × 0.05 mm |
F(000) = 1040 |
Oxford Diffraction Xcalibur E diffractometer | 2762 independent reflections |
Radiation source: fine-focus sealed tube | 1819 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 28.0°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −12→13 |
Tmin = 0.751, Tmax = 1.000 | k = −10→14 |
10140 measured reflections | l = −26→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0316P)2 + 0.7321P] where P = (Fo2 + 2Fc2)/3 |
2762 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
C11H14BrNO | V = 2309.55 (14) Å3 |
Mr = 256.14 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.0728 (4) Å | µ = 3.53 mm−1 |
b = 11.2577 (4) Å | T = 123 K |
c = 20.3670 (6) Å | 0.25 × 0.12 × 0.05 mm |
Oxford Diffraction Xcalibur E diffractometer | 2762 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1819 reflections with I > 2σ(I) |
Tmin = 0.751, Tmax = 1.000 | Rint = 0.049 |
10140 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.58 e Å−3 |
2762 reflections | Δρmin = −0.46 e Å−3 |
133 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.74332 (3) | 0.28652 (3) | 0.384590 (15) | 0.02982 (13) | |
O1 | 0.94616 (17) | 0.2851 (2) | 0.24129 (10) | 0.0200 (5) | |
N1 | 0.7262 (2) | 0.2730 (3) | 0.21911 (12) | 0.0158 (6) | |
C1 | 0.6864 (3) | 0.4811 (3) | 0.30022 (16) | 0.0214 (7) | |
H1A | 0.7056 | 0.5288 | 0.2611 | 0.032* | |
H1B | 0.6768 | 0.5335 | 0.3384 | 0.032* | |
H1C | 0.6037 | 0.4368 | 0.2935 | 0.032* | |
C2 | 0.7996 (3) | 0.3946 (3) | 0.31211 (15) | 0.0173 (7) | |
C3 | 0.9232 (3) | 0.4587 (3) | 0.33541 (16) | 0.0287 (9) | |
H3A | 0.9914 | 0.4004 | 0.3472 | 0.043* | |
H3B | 0.9015 | 0.5073 | 0.3739 | 0.043* | |
H3C | 0.9565 | 0.5100 | 0.3002 | 0.043* | |
C4 | 0.8312 (3) | 0.3116 (3) | 0.25448 (14) | 0.0158 (7) | |
C5 | 0.7307 (2) | 0.1928 (3) | 0.16557 (14) | 0.0160 (7) | |
C6 | 0.8384 (3) | 0.1847 (3) | 0.12261 (14) | 0.0203 (7) | |
H6 | 0.9135 | 0.2348 | 0.1281 | 0.024* | |
C7 | 0.8347 (3) | 0.1030 (3) | 0.07213 (15) | 0.0241 (8) | |
H7 | 0.9082 | 0.0986 | 0.0431 | 0.029* | |
C8 | 0.7285 (3) | 0.0274 (3) | 0.06198 (15) | 0.0229 (8) | |
C9 | 0.6210 (3) | 0.0383 (3) | 0.10438 (16) | 0.0273 (8) | |
H9 | 0.5457 | −0.0113 | 0.0985 | 0.033* | |
C10 | 0.6216 (3) | 0.1202 (3) | 0.15499 (15) | 0.0225 (8) | |
H10 | 0.5463 | 0.1267 | 0.1829 | 0.027* | |
C11 | 0.7287 (3) | −0.0636 (4) | 0.00758 (17) | 0.0338 (9) | |
H11A | 0.6452 | −0.1082 | 0.0085 | 0.051* | 0.50 |
H11B | 0.8033 | −0.1184 | 0.0138 | 0.051* | 0.50 |
H11C | 0.7378 | −0.0233 | −0.0348 | 0.051* | 0.50 |
H11D | 0.8123 | −0.0584 | −0.0168 | 0.051* | 0.50 |
H11E | 0.6542 | −0.0482 | −0.0222 | 0.051* | 0.50 |
H11F | 0.7197 | −0.1433 | 0.0264 | 0.051* | 0.50 |
H1N | 0.652 (2) | 0.292 (3) | 0.2342 (15) | 0.032 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0475 (2) | 0.0235 (2) | 0.01844 (18) | 0.00201 (17) | 0.00410 (15) | 0.00302 (15) |
O1 | 0.0101 (9) | 0.0260 (14) | 0.0240 (12) | 0.0013 (10) | −0.0012 (8) | −0.0053 (11) |
N1 | 0.0086 (12) | 0.0198 (15) | 0.0191 (13) | 0.0006 (11) | 0.0013 (9) | −0.0026 (11) |
C1 | 0.0213 (16) | 0.017 (2) | 0.0254 (18) | 0.0021 (13) | 0.0028 (14) | −0.0020 (15) |
C2 | 0.0131 (13) | 0.0159 (19) | 0.0228 (17) | −0.0020 (12) | 0.0012 (12) | 0.0001 (15) |
C3 | 0.0218 (16) | 0.037 (3) | 0.0269 (19) | −0.0069 (16) | −0.0011 (14) | −0.0152 (18) |
C4 | 0.0163 (14) | 0.0137 (18) | 0.0175 (15) | −0.0003 (12) | −0.0010 (12) | 0.0051 (14) |
C5 | 0.0137 (14) | 0.0189 (18) | 0.0153 (15) | 0.0014 (13) | −0.0025 (11) | 0.0010 (13) |
C6 | 0.0172 (14) | 0.025 (2) | 0.0182 (16) | −0.0014 (13) | 0.0012 (12) | 0.0021 (15) |
C7 | 0.0217 (16) | 0.034 (2) | 0.0165 (17) | 0.0033 (15) | 0.0025 (13) | −0.0009 (16) |
C8 | 0.0334 (19) | 0.020 (2) | 0.0155 (16) | 0.0022 (15) | −0.0021 (14) | −0.0022 (14) |
C9 | 0.0275 (17) | 0.031 (2) | 0.0230 (18) | −0.0104 (15) | −0.0014 (14) | −0.0048 (16) |
C10 | 0.0182 (15) | 0.030 (2) | 0.0192 (17) | −0.0032 (14) | 0.0029 (13) | −0.0042 (16) |
C11 | 0.051 (2) | 0.029 (2) | 0.0213 (18) | −0.0049 (17) | 0.0051 (16) | −0.0064 (16) |
Br1—C2 | 1.995 (3) | C6—C7 | 1.380 (4) |
O1—C4 | 1.226 (3) | C6—H6 | 0.9500 |
N1—C4 | 1.352 (4) | C7—C8 | 1.382 (4) |
N1—C5 | 1.416 (4) | C7—H7 | 0.9500 |
N1—H1N | 0.840 (17) | C8—C9 | 1.391 (4) |
C1—C2 | 1.519 (4) | C8—C11 | 1.509 (5) |
C1—H1A | 0.9800 | C9—C10 | 1.382 (4) |
C1—H1B | 0.9800 | C9—H9 | 0.9500 |
C1—H1C | 0.9800 | C10—H10 | 0.9500 |
C2—C3 | 1.515 (4) | C11—H11A | 0.9800 |
C2—C4 | 1.533 (4) | C11—H11B | 0.9800 |
C3—H3A | 0.9800 | C11—H11C | 0.9800 |
C3—H3B | 0.9800 | C11—H11D | 0.9800 |
C3—H3C | 0.9800 | C11—H11E | 0.9800 |
C5—C10 | 1.387 (4) | C11—H11F | 0.9800 |
C5—C6 | 1.397 (4) | ||
C4—N1—C5 | 126.2 (2) | C8—C7—H7 | 118.5 |
C4—N1—H1N | 115 (2) | C7—C8—C9 | 117.1 (3) |
C5—N1—H1N | 118 (2) | C7—C8—C11 | 121.8 (3) |
C2—C1—H1A | 109.5 | C9—C8—C11 | 121.1 (3) |
C2—C1—H1B | 109.5 | C10—C9—C8 | 121.2 (3) |
H1A—C1—H1B | 109.5 | C10—C9—H9 | 119.4 |
C2—C1—H1C | 109.5 | C8—C9—H9 | 119.4 |
H1A—C1—H1C | 109.5 | C9—C10—C5 | 120.8 (3) |
H1B—C1—H1C | 109.5 | C9—C10—H10 | 119.6 |
C3—C2—C1 | 111.2 (3) | C5—C10—H10 | 119.6 |
C3—C2—C4 | 111.1 (2) | C8—C11—H11A | 109.5 |
C1—C2—C4 | 115.1 (2) | C8—C11—H11B | 109.5 |
C3—C2—Br1 | 107.0 (2) | H11A—C11—H11B | 109.5 |
C1—C2—Br1 | 107.20 (19) | C8—C11—H11C | 109.5 |
C4—C2—Br1 | 104.7 (2) | H11A—C11—H11C | 109.5 |
C2—C3—H3A | 109.5 | H11B—C11—H11C | 109.5 |
C2—C3—H3B | 109.5 | C8—C11—H11D | 109.5 |
H3A—C3—H3B | 109.5 | H11A—C11—H11D | 141.1 |
C2—C3—H3C | 109.5 | H11B—C11—H11D | 56.3 |
H3A—C3—H3C | 109.5 | H11C—C11—H11D | 56.3 |
H3B—C3—H3C | 109.5 | C8—C11—H11E | 109.5 |
O1—C4—N1 | 123.0 (3) | H11A—C11—H11E | 56.3 |
O1—C4—C2 | 120.8 (3) | H11B—C11—H11E | 141.1 |
N1—C4—C2 | 116.2 (2) | H11C—C11—H11E | 56.3 |
C10—C5—C6 | 118.7 (3) | H11D—C11—H11E | 109.5 |
C10—C5—N1 | 118.1 (3) | C8—C11—H11F | 109.5 |
C6—C5—N1 | 123.3 (3) | H11A—C11—H11F | 56.3 |
C7—C6—C5 | 119.3 (3) | H11B—C11—H11F | 56.3 |
C7—C6—H6 | 120.4 | H11C—C11—H11F | 141.1 |
C5—C6—H6 | 120.4 | H11D—C11—H11F | 109.5 |
C6—C7—C8 | 122.9 (3) | H11E—C11—H11F | 109.5 |
C6—C7—H7 | 118.5 | ||
C5—N1—C4—O1 | 4.0 (5) | C10—C5—C6—C7 | −1.6 (5) |
C5—N1—C4—C2 | −177.5 (3) | N1—C5—C6—C7 | 179.3 (3) |
C3—C2—C4—O1 | 14.6 (4) | C5—C6—C7—C8 | −0.4 (5) |
C1—C2—C4—O1 | 142.0 (3) | C6—C7—C8—C9 | 1.6 (5) |
Br1—C2—C4—O1 | −100.5 (3) | C6—C7—C8—C11 | −178.2 (3) |
C3—C2—C4—N1 | −163.9 (3) | C7—C8—C9—C10 | −1.0 (5) |
C1—C2—C4—N1 | −36.5 (4) | C11—C8—C9—C10 | 178.8 (3) |
Br1—C2—C4—N1 | 81.0 (3) | C8—C9—C10—C5 | −0.9 (5) |
C4—N1—C5—C10 | 149.7 (3) | C6—C5—C10—C9 | 2.2 (5) |
C4—N1—C5—C6 | −31.2 (5) | N1—C5—C10—C9 | −178.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.84 (2) | 2.13 (2) | 2.937 (3) | 161 (3) |
C1—H1C···O1i | 0.98 | 2.44 | 3.382 (4) | 162 |
C10—H10···O1i | 0.95 | 2.57 | 3.321 (4) | 137 |
Symmetry code: (i) x−1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H14BrNO |
Mr | 256.14 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 123 |
a, b, c (Å) | 10.0728 (4), 11.2577 (4), 20.3670 (6) |
V (Å3) | 2309.55 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 3.53 |
Crystal size (mm) | 0.25 × 0.12 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur E diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.751, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10140, 2762, 1819 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.093, 1.06 |
No. of reflections | 2762 |
No. of parameters | 133 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.58, −0.46 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.840 (17) | 2.13 (2) | 2.937 (3) | 161 (3) |
C1—H1C···O1i | 0.98 | 2.44 | 3.382 (4) | 162 |
C10—H10···O1i | 0.95 | 2.57 | 3.321 (4) | 137 |
Symmetry code: (i) x−1/2, y, −z+1/2. |
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF and FZ also thank the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721–1723. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990. Web of Science CrossRef PubMed CAS Google Scholar
Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ATRP process (polymerization by atom transfer radical) allows control of the composition and functionality in polymerization reactions (Pietrasik & Tsarevsky, 2010). The use of functional initiators in these reactions allows the synthesis of new materials. Most initiators for ATRP processes are alkyl halides (Matyjaszewski & Xia, 2001; Kato et al., 1995). As part of our work related to functional initiators in polymerization processes (Moreno-Fuquen et al., 2011) we have determined the crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C4—N1—C5—C6 torsion angle of -31.2 (5) °. In the crystal, intermolecular N—H···O and weak C—H···O hydrogen bonds link molecules into one-dimensional chains along [100] incorporating C(4) graph motifs (Etter, 1990) (see Table 1 and Fig. 2).