organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-2-methyl-N-p-tolyl­propanamide

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cInstituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 15 May 2011; accepted 21 May 2011; online 28 May 2011)

In the title mol­ecule, C11H14BrNO, there is twist between the mean plane of the amide group and the benzene ring [C(=O)—N—C C torsion angle = −31.2 (5)°]. In the crystal, inter­molecular N—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into chains along [100]. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

Related literature

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001[Matyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921-2990.]); Kato et al. (1995[Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721-1723.]); Pietrasik & Tsarevsky (2010[Pietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333-2340.]). For a related structure, see: Moreno-Fuquen et al. (2011[Moreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659.]). For hydrogen-bond graph sets, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14BrNO

  • Mr = 256.14

  • Orthorhombic, P b c a

  • a = 10.0728 (4) Å

  • b = 11.2577 (4) Å

  • c = 20.3670 (6) Å

  • V = 2309.55 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 123 K

  • 0.25 × 0.12 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.751, Tmax = 1.000

  • 10140 measured reflections

  • 2762 independent reflections

  • 1819 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.093

  • S = 1.06

  • 2762 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.13 (2) 2.937 (3) 161 (3)
C1—H1C⋯O1i 0.98 2.44 3.382 (4) 162
C10—H10⋯O1i 0.95 2.57 3.321 (4) 137
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis CCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The ATRP process (polymerization by atom transfer radical) allows control of the composition and functionality in polymerization reactions (Pietrasik & Tsarevsky, 2010). The use of functional initiators in these reactions allows the synthesis of new materials. Most initiators for ATRP processes are alkyl halides (Matyjaszewski & Xia, 2001; Kato et al., 1995). As part of our work related to functional initiators in polymerization processes (Moreno-Fuquen et al., 2011) we have determined the crystal structure of the title compound (I). The molecular structure of (I) is shown in Fig. 1. There is a twist between the mean plane of the amide group and benzene ring giving a C4—N1—C5—C6 torsion angle of -31.2 (5) °. In the crystal, intermolecular N—H···O and weak C—H···O hydrogen bonds link molecules into one-dimensional chains along [100] incorporating C(4) graph motifs (Etter, 1990) (see Table 1 and Fig. 2).

Related literature top

For initiators in ATRP processes (polymerization by atom transfer radical), see: Matyjaszewski & Xia (2001); Kato et al. (1995); Pietrasik & Tsarevsky (2010). For a related structure, see: Moreno-Fuquen et al. (2011). For hydrogen-bond graph sets, see: Etter (1990).

Experimental top

The initial reagents were purchased from Aldrich Chemical Co. and were used as received. In a 100mL round bottom flask 4-methylaniline (3.173 mmoles, 0.340 g), triethylamine (0.635 mmol, 0.064 g) were mixed, then a solution of 2-bromo isobutiryl bromide (0.685 g) in anhydrous THF (5 ml) was added drop wise, under an argon stream. The reaction was carried out in a dry bag overnight under magnetic stirring. The solid was filtered off and dichloromethane (20 ml) added to the organic phase which was washed with brine (50 ml) followed by water (10 ml). The solution was concentrated at low pressure affording colourless crystals and recrystalized from a solution of hexane and ethyl acetate (80:20). M.p. 364 (1) K.

Refinement top

The H-atoms were placed geometrically with C—H= 0.95 Å for aromatic, C—H = 0.98 Å for methyl and Uiso(H) 1.2 and 1.5 times Ueq of the parent atom respectively. The methyl group H atoms are disordered over two sets of sites with equal occupancy.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis CCD (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a one dimensional chain along [100]. Symmetry code: (i) x-1/2,+y,-z+1/2.
2-Bromo-2-methyl-N-p-tolylpropanamide top
Crystal data top
C11H14BrNODx = 1.473 Mg m3
Mr = 256.14Melting point: 385(1) K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2266 reflections
a = 10.0728 (4) Åθ = 3.4–29.5°
b = 11.2577 (4) ŵ = 3.53 mm1
c = 20.3670 (6) ÅT = 123 K
V = 2309.55 (14) Å3Tablet, colourless
Z = 80.25 × 0.12 × 0.05 mm
F(000) = 1040
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube1819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1213
Tmin = 0.751, Tmax = 1.000k = 1014
10140 measured reflectionsl = 2622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.7321P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C11H14BrNOV = 2309.55 (14) Å3
Mr = 256.14Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0728 (4) ŵ = 3.53 mm1
b = 11.2577 (4) ÅT = 123 K
c = 20.3670 (6) Å0.25 × 0.12 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1819 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 1.000Rint = 0.049
10140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.58 e Å3
2762 reflectionsΔρmin = 0.46 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.74332 (3)0.28652 (3)0.384590 (15)0.02982 (13)
O10.94616 (17)0.2851 (2)0.24129 (10)0.0200 (5)
N10.7262 (2)0.2730 (3)0.21911 (12)0.0158 (6)
C10.6864 (3)0.4811 (3)0.30022 (16)0.0214 (7)
H1A0.70560.52880.26110.032*
H1B0.67680.53350.33840.032*
H1C0.60370.43680.29350.032*
C20.7996 (3)0.3946 (3)0.31211 (15)0.0173 (7)
C30.9232 (3)0.4587 (3)0.33541 (16)0.0287 (9)
H3A0.99140.40040.34720.043*
H3B0.90150.50730.37390.043*
H3C0.95650.51000.30020.043*
C40.8312 (3)0.3116 (3)0.25448 (14)0.0158 (7)
C50.7307 (2)0.1928 (3)0.16557 (14)0.0160 (7)
C60.8384 (3)0.1847 (3)0.12261 (14)0.0203 (7)
H60.91350.23480.12810.024*
C70.8347 (3)0.1030 (3)0.07213 (15)0.0241 (8)
H70.90820.09860.04310.029*
C80.7285 (3)0.0274 (3)0.06198 (15)0.0229 (8)
C90.6210 (3)0.0383 (3)0.10438 (16)0.0273 (8)
H90.54570.01130.09850.033*
C100.6216 (3)0.1202 (3)0.15499 (15)0.0225 (8)
H100.54630.12670.18290.027*
C110.7287 (3)0.0636 (4)0.00758 (17)0.0338 (9)
H11A0.64520.10820.00850.051*0.50
H11B0.80330.11840.01380.051*0.50
H11C0.73780.02330.03480.051*0.50
H11D0.81230.05840.01680.051*0.50
H11E0.65420.04820.02220.051*0.50
H11F0.71970.14330.02640.051*0.50
H1N0.652 (2)0.292 (3)0.2342 (15)0.032 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0475 (2)0.0235 (2)0.01844 (18)0.00201 (17)0.00410 (15)0.00302 (15)
O10.0101 (9)0.0260 (14)0.0240 (12)0.0013 (10)0.0012 (8)0.0053 (11)
N10.0086 (12)0.0198 (15)0.0191 (13)0.0006 (11)0.0013 (9)0.0026 (11)
C10.0213 (16)0.017 (2)0.0254 (18)0.0021 (13)0.0028 (14)0.0020 (15)
C20.0131 (13)0.0159 (19)0.0228 (17)0.0020 (12)0.0012 (12)0.0001 (15)
C30.0218 (16)0.037 (3)0.0269 (19)0.0069 (16)0.0011 (14)0.0152 (18)
C40.0163 (14)0.0137 (18)0.0175 (15)0.0003 (12)0.0010 (12)0.0051 (14)
C50.0137 (14)0.0189 (18)0.0153 (15)0.0014 (13)0.0025 (11)0.0010 (13)
C60.0172 (14)0.025 (2)0.0182 (16)0.0014 (13)0.0012 (12)0.0021 (15)
C70.0217 (16)0.034 (2)0.0165 (17)0.0033 (15)0.0025 (13)0.0009 (16)
C80.0334 (19)0.020 (2)0.0155 (16)0.0022 (15)0.0021 (14)0.0022 (14)
C90.0275 (17)0.031 (2)0.0230 (18)0.0104 (15)0.0014 (14)0.0048 (16)
C100.0182 (15)0.030 (2)0.0192 (17)0.0032 (14)0.0029 (13)0.0042 (16)
C110.051 (2)0.029 (2)0.0213 (18)0.0049 (17)0.0051 (16)0.0064 (16)
Geometric parameters (Å, º) top
Br1—C21.995 (3)C6—C71.380 (4)
O1—C41.226 (3)C6—H60.9500
N1—C41.352 (4)C7—C81.382 (4)
N1—C51.416 (4)C7—H70.9500
N1—H1N0.840 (17)C8—C91.391 (4)
C1—C21.519 (4)C8—C111.509 (5)
C1—H1A0.9800C9—C101.382 (4)
C1—H1B0.9800C9—H90.9500
C1—H1C0.9800C10—H100.9500
C2—C31.515 (4)C11—H11A0.9800
C2—C41.533 (4)C11—H11B0.9800
C3—H3A0.9800C11—H11C0.9800
C3—H3B0.9800C11—H11D0.9800
C3—H3C0.9800C11—H11E0.9800
C5—C101.387 (4)C11—H11F0.9800
C5—C61.397 (4)
C4—N1—C5126.2 (2)C8—C7—H7118.5
C4—N1—H1N115 (2)C7—C8—C9117.1 (3)
C5—N1—H1N118 (2)C7—C8—C11121.8 (3)
C2—C1—H1A109.5C9—C8—C11121.1 (3)
C2—C1—H1B109.5C10—C9—C8121.2 (3)
H1A—C1—H1B109.5C10—C9—H9119.4
C2—C1—H1C109.5C8—C9—H9119.4
H1A—C1—H1C109.5C9—C10—C5120.8 (3)
H1B—C1—H1C109.5C9—C10—H10119.6
C3—C2—C1111.2 (3)C5—C10—H10119.6
C3—C2—C4111.1 (2)C8—C11—H11A109.5
C1—C2—C4115.1 (2)C8—C11—H11B109.5
C3—C2—Br1107.0 (2)H11A—C11—H11B109.5
C1—C2—Br1107.20 (19)C8—C11—H11C109.5
C4—C2—Br1104.7 (2)H11A—C11—H11C109.5
C2—C3—H3A109.5H11B—C11—H11C109.5
C2—C3—H3B109.5C8—C11—H11D109.5
H3A—C3—H3B109.5H11A—C11—H11D141.1
C2—C3—H3C109.5H11B—C11—H11D56.3
H3A—C3—H3C109.5H11C—C11—H11D56.3
H3B—C3—H3C109.5C8—C11—H11E109.5
O1—C4—N1123.0 (3)H11A—C11—H11E56.3
O1—C4—C2120.8 (3)H11B—C11—H11E141.1
N1—C4—C2116.2 (2)H11C—C11—H11E56.3
C10—C5—C6118.7 (3)H11D—C11—H11E109.5
C10—C5—N1118.1 (3)C8—C11—H11F109.5
C6—C5—N1123.3 (3)H11A—C11—H11F56.3
C7—C6—C5119.3 (3)H11B—C11—H11F56.3
C7—C6—H6120.4H11C—C11—H11F141.1
C5—C6—H6120.4H11D—C11—H11F109.5
C6—C7—C8122.9 (3)H11E—C11—H11F109.5
C6—C7—H7118.5
C5—N1—C4—O14.0 (5)C10—C5—C6—C71.6 (5)
C5—N1—C4—C2177.5 (3)N1—C5—C6—C7179.3 (3)
C3—C2—C4—O114.6 (4)C5—C6—C7—C80.4 (5)
C1—C2—C4—O1142.0 (3)C6—C7—C8—C91.6 (5)
Br1—C2—C4—O1100.5 (3)C6—C7—C8—C11178.2 (3)
C3—C2—C4—N1163.9 (3)C7—C8—C9—C101.0 (5)
C1—C2—C4—N136.5 (4)C11—C8—C9—C10178.8 (3)
Br1—C2—C4—N181.0 (3)C8—C9—C10—C50.9 (5)
C4—N1—C5—C10149.7 (3)C6—C5—C10—C92.2 (5)
C4—N1—C5—C631.2 (5)N1—C5—C10—C9178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.13 (2)2.937 (3)161 (3)
C1—H1C···O1i0.982.443.382 (4)162
C10—H10···O1i0.952.573.321 (4)137
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14BrNO
Mr256.14
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)123
a, b, c (Å)10.0728 (4), 11.2577 (4), 20.3670 (6)
V3)2309.55 (14)
Z8
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.25 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.751, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10140, 2762, 1819
Rint0.049
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.093, 1.06
No. of reflections2762
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.840 (17)2.13 (2)2.937 (3)161 (3)
C1—H1C···O1i0.982.443.382 (4)162
C10—H10···O1i0.952.573.321 (4)137
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and FZ also thank the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. (1995). Macromolecules, 28, 1721–1723.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatyjaszewski, K. & Xia, J. (2001). Chem. Rev. 101, 2921–2990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreno-Fuquen, R., Quintero, D. E., Zuluaga, F., Haiduke, R. L. A. & Kennedy, A. R. (2011). Acta Cryst. E67, o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPietrasik, J. & Tsarevsky, N. V. (2010). Eur. Polym. J. 46, 2333–2340.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds