organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Methyl­sulfan­yl)phen­yl]naphtho[1,8-de][1,3,2]di­aza­borinane

aWarren Research Laboratory, School of Chemistry, University of KwaZulu Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: robinsonr@ukzn.ac.za

(Received 24 March 2011; accepted 19 April 2011; online 7 May 2011)

The title compound, C17H15BN2S, is one member in a series of diaza­borinanes featuring substitution at the 1-, 2- and 3-positions in the nitro­gen–boron heterocycle. The dihedral angle between the mean planes of the naphthalene and phenyl ring systems is 19.86 (6)°. In the crystal structure, two C—H⋯π inter­actions link the mol­ecules into sheets which lie parallel to the bc plane. There is a ππ inter­action between each pair of centrosymmetrically related sheets [centroid–centroid distance = 3.5922 (8) Å].

Related literature

For the synthesis of the title compound, see: Slabber (2011[Slabber, C. A. (2011). Ultrastabilized Boranes: A Study into the Synthesis, Structure and Reactivities of Heterosubstituted Organoboranes. MSc Thesis, University of KwaZulu Natal, South Africa.]). For the structures of related compounds and luminescence studies, see: Weber et al. (2009[Weber, L., Werner, V., Fox, M. A., Marder, R. T. S., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339-1351.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BN2S

  • Mr = 290.18

  • Monoclinic, P 21 /c

  • a = 13.7594 (6) Å

  • b = 9.0545 (3) Å

  • c = 12.7830 (5) Å

  • β = 113.411 (5)°

  • V = 1461.46 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.919, Tmax = 0.939

  • 14782 measured reflections

  • 4709 independent reflections

  • 2774 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 0.98

  • 4709 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C5–C9 ring and Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.93 2.75 3.5178 (18) 141
C12—H12⋯Cg2ii 0.93 2.82 3.6122 (17) 144
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON, SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

C17H15BN2S, is one compound in a series of diazaborinanes featuring substitution at the 1, 2 and 3 positions in the nitrogen–boron heterocycle. The dihedral angle between the mean planes of the naphthalene and the phenyl ring systems is 19.86 (6)°. The atoms N1, B1 and N2 lie at 0.053 (2) Å, 0.084 (2) Å and 0.017 (2) Å respectively above the mean plane of the naphthalene ring.

The H atoms attached to the N atoms are unavailable for hydrogen-bonding due to their positions in the molecule.

The supramolecular structure is determined by the C2—H2···Cg3(x, 0.5 - y, -0.5 + z) and the C12—H12···Cg2(x, -0.5 - y, 0.5 + z), where Cg3 is the centroid of the phenyl ring containing C11 and Cg2 is the centroid of the phenyl ring containing C8. These link the molecules into sheets which lie in the bc plane.

There is a ππ interaction between the centrosymmetrically related phenyl rings, containing C8, at (x, y, z) and (1 - x, -y, -z). The centroid-to-centroid distance is 3.5922 (8) Å, with a perpendicular spacing between the planes of 3.3883 (6) Å and a slippage of 1.193 Å.

Related literature top

For the synthesis of the title compound, see: Slabber (2011). For the structures of related compounds and luminescence studies, see: Weber et al. (2009).

Experimental top

To a solution of 1,8-diaminonaphthalene in toluene (4.11 mmol in 50 ml, 0.82 M) (Slabber, 2011) was added the 4-(methylthio)phenylboronic acid (4.11 mmol) in one portion. The round-bottomed flask was equipped with a Dean and Stark trap, and the solution was stirred and heated at 110°C for 3 h. The solvent was removed in vacuo and column chromatography of the crude solid on silica eluting with CH2Cl2 yielded yellow crystalline material in a yield of 65%. Crystals suitable for X-ray diffraction analysis were grown from CH2Cl2 at room temperature.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.93 Å, with Uiso = 1.2Ueq(C) and C—H3 (methyl), 0.96Å, with Uiso = 1.5Ueq(C). H atoms attached to N atoms were located on a difference map, and allowed to refine.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule showing the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-[4-(Methylsulfanyl)phenyl]naphtho[1,8-de][1,3,2]diazaborinane top
Crystal data top
C17H15BN2SF(000) = 608
Mr = 290.18Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5105 reflections
a = 13.7594 (6) Åθ = 2.8–32.0°
b = 9.0545 (3) ŵ = 0.21 mm1
c = 12.7830 (5) ÅT = 296 K
β = 113.411 (5)°Prismatic, yellow
V = 1461.46 (10) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
4709 independent reflections
Radiation source: fine-focus sealed tube2774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.4190 pixels mm-1θmax = 32.1°, θmin = 2.8°
ω scansh = 1920
Absorption correction: multi-scan
CrysAlis RED; Oxford Diffraction, 2008)
k = 1212
Tmin = 0.919, Tmax = 0.939l = 1618
14782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0834P)2]
where P = (Fo2 + 2Fc2)/3
4709 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C17H15BN2SV = 1461.46 (10) Å3
Mr = 290.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7594 (6) ŵ = 0.21 mm1
b = 9.0545 (3) ÅT = 296 K
c = 12.7830 (5) Å0.40 × 0.40 × 0.30 mm
β = 113.411 (5)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
4709 independent reflections
Absorption correction: multi-scan
CrysAlis RED; Oxford Diffraction, 2008)
2774 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.939Rint = 0.033
14782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.42 e Å3
4709 reflectionsΔρmin = 0.49 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06634 (4)0.07477 (6)0.41647 (4)0.07016 (19)
N10.23358 (10)0.04869 (14)0.03349 (11)0.0461 (3)
H1A0.1893 (14)0.1126 (19)0.0463 (14)0.055*
N20.34252 (10)0.14141 (14)0.08645 (10)0.0444 (3)
H2A0.3614 (13)0.1995 (19)0.1435 (14)0.053*
C10.28153 (11)0.03270 (15)0.11059 (12)0.0402 (3)
C20.25289 (13)0.11684 (18)0.20761 (13)0.0509 (4)
H20.19890.18610.22420.061*
C30.30433 (14)0.09910 (17)0.28158 (13)0.0534 (4)
H30.28330.15580.34760.064*
C40.38422 (13)0.00088 (17)0.25892 (13)0.0485 (4)
H40.41810.00770.30870.058*
C50.49989 (12)0.19240 (16)0.13262 (12)0.0447 (3)
H50.53580.20340.18030.054*
C60.52808 (12)0.27612 (16)0.03688 (12)0.0461 (3)
H60.58290.34400.02030.055*
C70.47646 (12)0.26238 (16)0.03701 (12)0.0441 (3)
H70.49700.32100.10200.053*
C80.39514 (11)0.16235 (14)0.01405 (11)0.0382 (3)
C90.36357 (11)0.07342 (14)0.08561 (11)0.0366 (3)
C100.41675 (11)0.08885 (14)0.16042 (11)0.0393 (3)
C110.21019 (11)0.00769 (16)0.15450 (12)0.0417 (3)
C120.25773 (12)0.05279 (17)0.26845 (13)0.0485 (4)
H120.32270.10110.29350.058*
C130.21171 (13)0.02803 (18)0.34438 (14)0.0505 (4)
H130.24620.05870.41960.061*
C140.11401 (11)0.04254 (16)0.31007 (13)0.0444 (3)
C150.06397 (11)0.08679 (16)0.19740 (13)0.0454 (3)
H150.00180.13270.17240.054*
C160.11204 (11)0.06258 (16)0.12205 (13)0.0448 (3)
H160.07770.09430.04700.054*
C170.05682 (14)0.1664 (2)0.34505 (16)0.0674 (5)
H17A0.04530.25710.31280.101*
H17B0.08820.18750.39840.101*
H17C0.10340.10420.28540.101*
B10.26262 (13)0.03403 (18)0.06810 (14)0.0412 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0687 (3)0.0942 (4)0.0586 (3)0.0245 (3)0.0370 (2)0.0095 (2)
N10.0447 (7)0.0488 (7)0.0469 (7)0.0105 (5)0.0205 (6)0.0060 (6)
N20.0530 (7)0.0436 (7)0.0412 (7)0.0061 (5)0.0237 (6)0.0095 (5)
C10.0423 (7)0.0380 (7)0.0377 (7)0.0020 (6)0.0133 (6)0.0009 (5)
C20.0560 (9)0.0479 (9)0.0456 (8)0.0103 (7)0.0167 (7)0.0085 (7)
C30.0677 (11)0.0499 (9)0.0391 (8)0.0042 (8)0.0174 (7)0.0095 (6)
C40.0664 (10)0.0447 (8)0.0380 (8)0.0024 (7)0.0245 (7)0.0008 (6)
C50.0523 (9)0.0437 (8)0.0417 (8)0.0027 (6)0.0226 (7)0.0071 (6)
C60.0487 (8)0.0412 (8)0.0477 (8)0.0056 (6)0.0182 (7)0.0043 (6)
C70.0527 (9)0.0390 (7)0.0399 (7)0.0046 (6)0.0177 (7)0.0038 (6)
C80.0430 (7)0.0346 (7)0.0369 (7)0.0035 (5)0.0158 (6)0.0015 (5)
C90.0405 (7)0.0334 (7)0.0331 (6)0.0058 (5)0.0115 (5)0.0041 (5)
C100.0465 (8)0.0356 (7)0.0356 (7)0.0073 (6)0.0163 (6)0.0066 (5)
C110.0407 (7)0.0415 (7)0.0438 (8)0.0018 (6)0.0179 (6)0.0002 (6)
C120.0443 (8)0.0541 (9)0.0484 (8)0.0107 (7)0.0196 (7)0.0055 (7)
C130.0499 (9)0.0579 (9)0.0445 (8)0.0091 (7)0.0196 (7)0.0068 (7)
C140.0447 (8)0.0415 (8)0.0500 (8)0.0011 (6)0.0220 (7)0.0008 (6)
C150.0368 (7)0.0488 (8)0.0488 (8)0.0026 (6)0.0152 (6)0.0010 (6)
C160.0409 (7)0.0499 (8)0.0407 (8)0.0019 (6)0.0132 (6)0.0012 (6)
C170.0618 (11)0.0654 (11)0.0844 (13)0.0100 (9)0.0391 (10)0.0003 (10)
B10.0405 (8)0.0420 (9)0.0414 (8)0.0037 (6)0.0166 (7)0.0013 (6)
Geometric parameters (Å, º) top
S1—C141.7534 (15)C6—H60.9300
S1—C171.7789 (18)C7—C81.3775 (19)
N1—C11.3944 (18)C7—H70.9300
N1—B11.412 (2)C8—C91.4213 (18)
N1—H1A0.808 (17)C9—C101.4231 (18)
N2—C81.3961 (17)C11—C161.398 (2)
N2—B11.416 (2)C11—C121.400 (2)
N2—H2A0.852 (17)C11—B11.559 (2)
C1—C21.373 (2)C12—C131.372 (2)
C1—C91.4188 (19)C12—H120.9300
C2—C31.398 (2)C13—C141.393 (2)
C2—H20.9300C13—H130.9300
C3—C41.353 (2)C14—C151.386 (2)
C3—H30.9300C15—C161.385 (2)
C4—C101.414 (2)C15—H150.9300
C4—H40.9300C16—H160.9300
C5—C61.359 (2)C17—H17A0.9600
C5—C101.411 (2)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—C71.3948 (19)
C14—S1—C17104.67 (8)C1—C9—C10119.39 (12)
C1—N1—B1123.67 (13)C8—C9—C10119.41 (12)
C1—N1—H1A117.5 (12)C5—C10—C4122.98 (13)
B1—N1—H1A118.8 (12)C5—C10—C9118.55 (12)
C8—N2—B1123.82 (12)C4—C10—C9118.48 (13)
C8—N2—H2A115.0 (11)C16—C11—C12116.00 (13)
B1—N2—H2A121.2 (11)C16—C11—B1121.58 (13)
C2—C1—N1122.28 (13)C12—C11—B1122.42 (13)
C2—C1—C9119.75 (13)C13—C12—C11122.17 (14)
N1—C1—C9117.96 (12)C13—C12—H12118.9
C1—C2—C3120.43 (14)C11—C12—H12118.9
C1—C2—H2119.8C12—C13—C14120.76 (14)
C3—C2—H2119.8C12—C13—H13119.6
C4—C3—C2121.17 (14)C14—C13—H13119.6
C4—C3—H3119.4C15—C14—C13118.60 (13)
C2—C3—H3119.4C15—C14—S1124.99 (11)
C3—C4—C10120.75 (14)C13—C14—S1116.35 (12)
C3—C4—H4119.6C16—C15—C14119.96 (13)
C10—C4—H4119.6C16—C15—H15120.0
C6—C5—C10120.69 (13)C14—C15—H15120.0
C6—C5—H5119.7C15—C16—C11122.50 (14)
C10—C5—H5119.7C15—C16—H16118.7
C5—C6—C7121.36 (14)C11—C16—H16118.7
C5—C6—H6119.3S1—C17—H17A109.5
C7—C6—H6119.3S1—C17—H17B109.5
C8—C7—C6120.23 (13)H17A—C17—H17B109.5
C8—C7—H7119.9S1—C17—H17C109.5
C6—C7—H7119.9H17A—C17—H17C109.5
C7—C8—N2122.63 (12)H17B—C17—H17C109.5
C7—C8—C9119.77 (12)N1—B1—N2115.72 (13)
N2—C8—C9117.58 (12)N1—B1—C11121.92 (13)
C1—C9—C8121.19 (12)N2—B1—C11122.36 (13)
B1—N1—C1—C2178.71 (15)C1—C9—C10—C5178.43 (12)
B1—N1—C1—C90.4 (2)C8—C9—C10—C50.22 (18)
N1—C1—C2—C3178.83 (14)C1—C9—C10—C41.23 (19)
C9—C1—C2—C30.3 (2)C8—C9—C10—C4179.88 (12)
C1—C2—C3—C41.0 (2)C16—C11—C12—C130.8 (2)
C2—C3—C4—C101.2 (2)B1—C11—C12—C13179.34 (14)
C10—C5—C6—C70.2 (2)C11—C12—C13—C140.7 (2)
C5—C6—C7—C80.1 (2)C12—C13—C14—C150.2 (2)
C6—C7—C8—N2178.36 (13)C12—C13—C14—S1177.34 (12)
C6—C7—C8—C90.3 (2)C17—S1—C14—C152.01 (16)
B1—N2—C8—C7176.50 (14)C17—S1—C14—C13179.41 (13)
B1—N2—C8—C92.2 (2)C13—C14—C15—C161.0 (2)
C2—C1—C9—C8179.98 (13)S1—C14—C15—C16176.34 (11)
N1—C1—C9—C80.86 (19)C14—C15—C16—C110.9 (2)
C2—C1—C9—C101.4 (2)C12—C11—C16—C150.0 (2)
N1—C1—C9—C10177.77 (12)B1—C11—C16—C15179.86 (13)
C7—C8—C9—C1178.74 (12)C1—N1—B1—N22.4 (2)
N2—C8—C9—C10.03 (19)C1—N1—B1—C11177.28 (13)
C7—C8—C9—C100.11 (19)C8—N2—B1—N13.3 (2)
N2—C8—C9—C10178.60 (12)C8—N2—B1—C11176.37 (13)
C6—C5—C10—C4179.96 (14)C16—C11—B1—N120.3 (2)
C6—C5—C10—C90.4 (2)C12—C11—B1—N1159.84 (15)
C3—C4—C10—C5179.68 (14)C16—C11—B1—N2160.00 (14)
C3—C4—C10—C90.0 (2)C12—C11—B1—N219.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.753.5178 (18)141
C12—H12···Cg2ii0.932.823.6122 (17)144
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H15BN2S
Mr290.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.7594 (6), 9.0545 (3), 12.7830 (5)
β (°) 113.411 (5)
V3)1461.46 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
diffractometer
Absorption correctionMulti-scan
CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.919, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
14782, 4709, 2774
Rint0.033
(sin θ/λ)max1)0.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.149, 0.98
No. of reflections4709
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.49

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.753.5178 (18)141
C12—H12···Cg2ii0.932.823.6122 (17)144
Symmetry codes: (i) x, y1/2, z3/2; (ii) x, y3/2, z1/2.
 

Acknowledgements

The authors thank Professor O. Q. Munro and Mr C. R. Wilson (University of KwaZulu-Natal) for the data collection and structure refinement.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlabber, C. A. (2011). Ultrastabilized Boranes: A Study into the Synthesis, Structure and Reactivities of Heterosubstituted Organoboranes. MSc Thesis, University of KwaZulu Natal, South Africa.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, L., Werner, V., Fox, M. A., Marder, R. T. S., Schwedler, S., Brockhinke, A., Stammler, H.-G. & Neumann, B. (2009). Dalton Trans. pp. 1339–1351.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds