organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Bis[4-(4-meth­­oxy­phen­­oxy)phen­yl]-2,5-di­hydro­furan-2,5-dione

aCollege of Science, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China, and bResearch and Development Center of Biorational Pesticide, Northwest A&F University, Yangling 712100, Shannxi Province, People's Republic of China
*Correspondence e-mail: fuzitong@163.com

(Received 30 March 2011; accepted 25 April 2011; online 7 May 2011)

In the crystal structure of the title compound, C30H22O7, neighbouring benzene rings are twisted out of the plane of the five-membered ring by 27.30 (3) and 45.47 (3)°.

Related literature

For background to the use of 3,4-diaryl-substituted maleic anhydride derivatives as photochromic materials, see: Irie (2000[Irie, M. (2000). Chem. Rev. 100, 1683-1684.]). For related structures, see: Liu et al. (2003[Liu, Y., Wang, Q., Liu, Y. & Yang, X. (2003). Chem. Phys. Lett. 373, 338-343.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22O7

  • Mr = 494.48

  • Orthorhombic, P b c n

  • a = 16.981 (5) Å

  • b = 15.291 (5) Å

  • c = 18.665 (5) Å

  • V = 4846 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.975

  • 21827 measured reflections

  • 4522 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.10

  • 4522 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Diaryl substituted maleic anhydride is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-Diaryl substituted maleic anhydride derivatives have been designed and synthesized to be used as photochromic materials (Irie et al., 2000; Liu et al., 2003). In the course of exploring new photochromic compounds, we obtained an intermediate compound, which was characterized by single crystal X-ray analysis.

The molecule holds two long-chain branches with methyl group as the end to enhance its solubility. The interplanar angles between the two benzene rings connecting with the maleic anhydride five-membered ring are different. The interplanar angle between the benzene plane defined by C8, C9, C10, C11, C12, C13 and maleic anhydride plane is 27.30 (3) ° and that to the other benzene plane defined by C18, C19, C20, C21, C22, C23 amount to 45.47 (3) °.

Related literature top

For background to this work, see: Irie et al. (2000). For related structures, see: Liu et al. (2003).

Experimental top

3,4-bis(4-(4-methoxyphenoxy)phenyl)-N-methyl Maleimide(0.76 g, 1.5 mmol) and potassium hydroxide (0.67 g, 12 mmol) were dissolved in 60 ml of a 1: 1: 1 mixture of water, tetrahydrofuran and Methanol. The mixture was refluxed for 3 h and afterwards 3,4-bis(4(4-methoxyphenoxy)phenyl)maleic anhydride (0.69 g, 93%) was precipitated out by acidification with HCl. The product was dissolved in ethanol and yellow block crystals were formed on slow evaporation of the solvent at room temperature over one week.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
3,4-Bis[4-(4-methoxyphenoxy)phenyl]-2,5-dihydrofuran-2,5-dione top
Crystal data top
C30H22O7F(000) = 2064
Mr = 494.48Dx = 1.355 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 3771 reflections
a = 16.981 (5) Åθ = 2.4–22.4°
b = 15.291 (5) ŵ = 0.10 mm1
c = 18.665 (5) ÅT = 293 K
V = 4846 (2) Å3Block, yellow
Z = 80.32 × 0.30 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
4522 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2019
Tmin = 0.970, Tmax = 0.975k = 1816
21827 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.1727P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4522 reflectionsΔρmax = 0.23 e Å3
337 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00128 (19)
Crystal data top
C30H22O7V = 4846 (2) Å3
Mr = 494.48Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 16.981 (5) ŵ = 0.10 mm1
b = 15.291 (5) ÅT = 293 K
c = 18.665 (5) Å0.32 × 0.30 × 0.26 mm
Data collection top
Bruker APEXII CCD
diffractometer
4522 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2555 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.975Rint = 0.059
21827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.10Δρmax = 0.23 e Å3
4522 reflectionsΔρmin = 0.21 e Å3
337 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10558 (15)0.4872 (2)0.51111 (18)0.0764 (10)
H1A0.10190.42530.51930.115*
H1B0.06350.50540.48010.115*
H1C0.10160.51760.55600.115*
C20.24659 (15)0.49232 (17)0.51718 (14)0.0418 (6)
C30.24878 (16)0.45835 (19)0.58530 (16)0.0568 (8)
H30.20230.44220.60800.068*
C40.32052 (17)0.44811 (19)0.62036 (16)0.0581 (8)
H40.32210.42600.66680.070*
C50.31599 (14)0.51489 (18)0.48274 (15)0.0484 (7)
H50.31450.53740.43650.058*
C60.38727 (15)0.50396 (18)0.51708 (16)0.0526 (7)
H60.43390.51880.49390.063*
C70.38916 (15)0.47097 (17)0.58578 (16)0.0481 (7)
C80.49774 (15)0.38500 (17)0.62627 (14)0.0428 (6)
C90.47156 (15)0.31190 (18)0.59006 (15)0.0490 (7)
H90.42780.31540.56020.059*
C100.51081 (14)0.23335 (17)0.59853 (14)0.0458 (7)
H100.49240.18400.57470.055*
C110.56429 (15)0.37990 (17)0.66916 (14)0.0475 (7)
H110.58220.42940.69310.057*
C120.60384 (15)0.30188 (17)0.67634 (14)0.0467 (7)
H120.64890.29930.70460.056*
C130.57726 (14)0.22642 (16)0.64184 (13)0.0390 (6)
C140.61543 (14)0.14103 (16)0.65403 (13)0.0405 (6)
C150.56624 (16)0.06282 (18)0.66906 (14)0.0481 (7)
C160.69217 (15)0.11614 (16)0.65787 (13)0.0410 (6)
C170.69275 (17)0.02296 (18)0.68064 (14)0.0481 (7)
C180.76504 (14)0.16345 (16)0.64095 (13)0.0396 (6)
C190.76455 (15)0.23214 (19)0.59134 (15)0.0529 (8)
H190.71750.24760.56930.063*
C200.83223 (15)0.27741 (19)0.57450 (16)0.0560 (8)
H200.83050.32290.54150.067*
C210.83686 (15)0.14187 (18)0.67179 (15)0.0476 (7)
H210.83910.09610.70450.057*
C220.90562 (15)0.18697 (18)0.65504 (15)0.0506 (7)
H220.95310.17120.67630.061*
C230.90295 (15)0.25499 (17)0.60682 (15)0.0478 (7)
C241.04147 (15)0.28383 (19)0.61559 (16)0.0504 (7)
C251.08571 (16)0.2206 (2)0.58285 (17)0.0602 (8)
H251.06520.18940.54440.072*
C261.16158 (16)0.20305 (19)0.60732 (15)0.0543 (8)
H261.19170.15970.58550.065*
C271.07113 (17)0.33074 (19)0.67234 (16)0.0541 (8)
H271.04080.37390.69400.065*
C281.14612 (17)0.31356 (18)0.69705 (15)0.0529 (7)
H281.16600.34450.73590.063*
C291.19195 (15)0.25009 (17)0.66392 (14)0.0444 (7)
C301.31494 (17)0.1746 (2)0.65874 (17)0.0721 (10)
H30A1.29110.11810.66440.108*
H30B1.36570.17470.68140.108*
H30C1.32090.18730.60870.108*
O10.17880 (9)0.50672 (13)0.47858 (10)0.0559 (5)
O20.46165 (10)0.46629 (12)0.62226 (11)0.0620 (6)
O30.49621 (12)0.05362 (13)0.66781 (11)0.0656 (6)
O40.61543 (11)0.00682 (12)0.68610 (10)0.0557 (5)
O50.74626 (11)0.02544 (13)0.69449 (11)0.0614 (6)
O60.96703 (10)0.30546 (13)0.58722 (12)0.0648 (6)
O71.26653 (10)0.23887 (13)0.69087 (10)0.0587 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0346 (16)0.114 (3)0.080 (2)0.0093 (18)0.0067 (16)0.001 (2)
C20.0356 (14)0.0384 (16)0.0515 (16)0.0018 (12)0.0012 (13)0.0010 (13)
C30.0433 (16)0.0582 (19)0.069 (2)0.0005 (14)0.0059 (16)0.0187 (16)
C40.0567 (19)0.059 (2)0.0584 (19)0.0039 (16)0.0007 (15)0.0198 (15)
C50.0393 (15)0.0589 (19)0.0470 (16)0.0016 (14)0.0039 (13)0.0060 (14)
C60.0362 (15)0.0557 (19)0.066 (2)0.0027 (14)0.0097 (14)0.0023 (15)
C70.0404 (16)0.0405 (16)0.0632 (19)0.0102 (13)0.0078 (14)0.0023 (14)
C80.0369 (15)0.0401 (16)0.0512 (17)0.0034 (12)0.0015 (12)0.0054 (13)
C90.0358 (15)0.0537 (18)0.0577 (18)0.0045 (14)0.0107 (13)0.0022 (15)
C100.0396 (15)0.0450 (16)0.0527 (17)0.0006 (13)0.0060 (13)0.0030 (13)
C110.0464 (16)0.0408 (17)0.0553 (18)0.0025 (13)0.0113 (14)0.0016 (14)
C120.0374 (15)0.0470 (17)0.0556 (18)0.0026 (13)0.0096 (13)0.0040 (14)
C130.0328 (14)0.0410 (16)0.0432 (15)0.0012 (12)0.0005 (11)0.0023 (12)
C140.0388 (15)0.0393 (15)0.0434 (15)0.0033 (12)0.0017 (12)0.0024 (12)
C150.0427 (17)0.0508 (18)0.0508 (17)0.0025 (15)0.0017 (14)0.0040 (14)
C160.0408 (15)0.0381 (15)0.0441 (15)0.0039 (12)0.0017 (12)0.0053 (12)
C170.0487 (17)0.0472 (18)0.0485 (17)0.0045 (15)0.0018 (14)0.0064 (14)
C180.0380 (15)0.0381 (15)0.0428 (15)0.0075 (12)0.0009 (12)0.0026 (12)
C190.0378 (16)0.060 (2)0.0606 (18)0.0079 (14)0.0007 (13)0.0196 (16)
C200.0450 (17)0.0570 (19)0.0659 (19)0.0076 (14)0.0028 (14)0.0242 (15)
C210.0425 (16)0.0444 (16)0.0558 (17)0.0041 (13)0.0034 (14)0.0096 (14)
C220.0382 (15)0.0515 (18)0.0622 (19)0.0048 (13)0.0066 (14)0.0081 (15)
C230.0389 (15)0.0448 (17)0.0599 (18)0.0051 (13)0.0050 (13)0.0061 (14)
C240.0365 (15)0.0466 (18)0.068 (2)0.0019 (14)0.0012 (14)0.0120 (16)
C250.0524 (18)0.0584 (19)0.070 (2)0.0029 (16)0.0142 (16)0.0164 (17)
C260.0471 (17)0.0562 (19)0.0597 (19)0.0074 (14)0.0067 (14)0.0150 (15)
C270.0547 (19)0.0475 (18)0.0600 (19)0.0018 (15)0.0183 (15)0.0011 (15)
C280.0583 (19)0.0524 (18)0.0479 (17)0.0093 (15)0.0055 (14)0.0051 (14)
C290.0410 (15)0.0485 (17)0.0438 (15)0.0068 (13)0.0006 (13)0.0016 (13)
C300.0463 (18)0.100 (3)0.070 (2)0.0106 (18)0.0022 (16)0.007 (2)
O10.0332 (10)0.0699 (14)0.0645 (13)0.0002 (10)0.0018 (9)0.0077 (10)
O20.0480 (12)0.0471 (12)0.0908 (16)0.0059 (9)0.0257 (11)0.0052 (11)
O30.0442 (12)0.0672 (14)0.0855 (15)0.0093 (11)0.0017 (11)0.0142 (12)
O40.0503 (12)0.0458 (12)0.0710 (14)0.0002 (10)0.0047 (10)0.0139 (10)
O50.0563 (12)0.0495 (12)0.0785 (14)0.0119 (10)0.0023 (11)0.0183 (11)
O60.0409 (11)0.0603 (13)0.0933 (16)0.0012 (10)0.0009 (11)0.0254 (12)
O70.0444 (12)0.0734 (14)0.0583 (12)0.0048 (10)0.0091 (9)0.0092 (11)
Geometric parameters (Å, º) top
C1—O11.416 (3)C16—C181.468 (3)
C1—H1A0.9600C16—C171.487 (4)
C1—H1B0.9600C17—O51.200 (3)
C1—H1C0.9600C17—O41.393 (3)
C2—C31.374 (4)C18—C211.388 (3)
C2—O11.376 (3)C18—C191.400 (3)
C2—C51.386 (3)C19—C201.378 (4)
C3—C41.392 (4)C19—H190.9300
C3—H30.9300C20—C231.387 (4)
C4—C71.377 (4)C20—H200.9300
C4—H40.9300C21—C221.392 (3)
C5—C61.380 (3)C21—H210.9300
C5—H50.9300C22—C231.376 (4)
C6—C71.378 (4)C22—H220.9300
C6—H60.9300C23—O61.383 (3)
C7—O21.408 (3)C24—C251.369 (4)
C8—C91.380 (4)C24—C271.375 (4)
C8—C111.387 (3)C24—O61.410 (3)
C8—O21.388 (3)C25—C261.393 (4)
C9—C101.383 (3)C25—H250.9300
C9—H90.9300C26—C291.378 (4)
C10—C131.392 (3)C26—H260.9300
C10—H100.9300C27—C281.380 (4)
C11—C121.376 (3)C27—H270.9300
C11—H110.9300C28—C291.389 (4)
C12—C131.396 (4)C28—H280.9300
C12—H120.9300C29—O71.373 (3)
C13—C141.475 (3)C30—O71.415 (3)
C14—C161.360 (3)C30—H30A0.9600
C14—C151.486 (4)C30—H30B0.9600
C15—O31.198 (3)C30—H30C0.9600
C15—O41.390 (3)
O1—C1—H1A109.5O5—C17—O4119.7 (2)
O1—C1—H1B109.5O5—C17—C16131.1 (3)
H1A—C1—H1B109.5O4—C17—C16109.1 (2)
O1—C1—H1C109.5C21—C18—C19117.2 (2)
H1A—C1—H1C109.5C21—C18—C16122.3 (2)
H1B—C1—H1C109.5C19—C18—C16120.5 (2)
C3—C2—O1124.6 (2)C20—C19—C18121.5 (2)
C3—C2—C5120.0 (2)C20—C19—H19119.2
O1—C2—C5115.4 (2)C18—C19—H19119.2
C2—C3—C4120.1 (3)C19—C20—C23119.9 (3)
C2—C3—H3120.0C19—C20—H20120.0
C4—C3—H3120.0C23—C20—H20120.0
C7—C4—C3119.5 (3)C18—C21—C22121.7 (2)
C7—C4—H4120.3C18—C21—H21119.1
C3—C4—H4120.3C22—C21—H21119.1
C6—C5—C2120.0 (3)C23—C22—C21119.6 (2)
C6—C5—H5120.0C23—C22—H22120.2
C2—C5—H5120.0C21—C22—H22120.2
C7—C6—C5119.8 (3)C22—C23—O6124.7 (2)
C7—C6—H6120.1C22—C23—C20120.0 (3)
C5—C6—H6120.1O6—C23—C20115.4 (2)
C4—C7—C6120.6 (3)C25—C24—C27120.8 (3)
C4—C7—O2120.0 (3)C25—C24—O6119.4 (3)
C6—C7—O2119.3 (2)C27—C24—O6119.7 (3)
C9—C8—C11120.0 (2)C24—C25—C26119.8 (3)
C9—C8—O2123.8 (2)C24—C25—H25120.1
C11—C8—O2116.2 (2)C26—C25—H25120.1
C8—C9—C10119.5 (2)C29—C26—C25119.8 (3)
C8—C9—H9120.3C29—C26—H26120.1
C10—C9—H9120.3C25—C26—H26120.1
C9—C10—C13121.5 (2)C24—C27—C28119.8 (3)
C9—C10—H10119.2C24—C27—H27120.1
C13—C10—H10119.2C28—C27—H27120.1
C12—C11—C8120.2 (2)C27—C28—C29120.1 (3)
C12—C11—H11119.9C27—C28—H28120.0
C8—C11—H11119.9C29—C28—H28120.0
C11—C12—C13120.9 (2)O7—C29—C26124.1 (2)
C11—C12—H12119.5O7—C29—C28116.2 (2)
C13—C12—H12119.5C26—C29—C28119.7 (3)
C10—C13—C12117.8 (2)O7—C30—H30A109.5
C10—C13—C14120.9 (2)O7—C30—H30B109.5
C12—C13—C14121.2 (2)H30A—C30—H30B109.5
C16—C14—C13132.6 (2)O7—C30—H30C109.5
C16—C14—C15107.7 (2)H30A—C30—H30C109.5
C13—C14—C15119.6 (2)H30B—C30—H30C109.5
O3—C15—O4120.7 (3)C2—O1—C1118.5 (2)
O3—C15—C14130.5 (3)C8—O2—C7117.2 (2)
O4—C15—C14108.8 (2)C15—O4—C17107.4 (2)
C14—C16—C18131.2 (2)C23—O6—C24118.4 (2)
C14—C16—C17106.8 (2)C29—O7—C30117.9 (2)
C18—C16—C17121.9 (2)

Experimental details

Crystal data
Chemical formulaC30H22O7
Mr494.48
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)16.981 (5), 15.291 (5), 18.665 (5)
V3)4846 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.970, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
21827, 4522, 2555
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.10
No. of reflections4522
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the Program of the National Department Benefit Research Foundation of China (No. 200903052) is greatly appreciated.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIrie, M. (2000). Chem. Rev. 100, 1683–1684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y., Wang, Q., Liu, Y. & Yang, X. (2003). Chem. Phys. Lett. 373, 338–343.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds