metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(nitrato-κO)copper(II)]-bis­­[μ-1,4-bis­­(pyridin-3-ylmeth­­oxy)benzene-κ2N:N′]]

aCollege of Life Science, Sichuan Agriculture University, Ya'an 625014, People's Republic of China, bCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and cDepartment of Materials and Chemistry Engineering, Heilongjiang Institute of Technology, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 15 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title compound, [Cu(NO3)2(C18H16N2O2)2]n, the CuII ion lies on an inversion center and is six-coordinated in a Jahn–Teller-distored octa­hedral geometry defined by four N atoms of the pyridine derivative forming a square plane, above and below which are the O atoms of the nitrate anion. The ligand links the metal atoms linto a linear chain running along the a axis. One of the nitrate O atoms is equally disordered over two sets of sites.

Related literature

For the synthesis and background to network structures built up from flexible pyridyl-based aromatic ligands and transition metals, see Liu et al. (2010a[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559-1568.],b[Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630-632.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C18H16N2O2)2]

  • Mr = 772.22

  • Monoclinic, P 21 /c

  • a = 8.4859 (17) Å

  • b = 17.030 (3) Å

  • c = 12.986 (4) Å

  • β = 116.22 (2)°

  • V = 1683.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.867, Tmax = 0.889

  • 16256 measured reflections

  • 3831 independent reflections

  • 3067 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.07

  • 3831 reflections

  • 251 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The bridging pyridyl ligands can be used to construct interesting 0D to three-dimensional supramolecular architectures. Our group has reported some isolated molecule, chain, plane and three-dimensional network structures built up by flexible pyridyl-based aromatic ligands and transition metals. (Liu et al., 2010a; Liu et al., 2010b). As our continuing work for pyridyl ligands, we report here the synthesis and crystal structure of the title compound.

An asymmetric unit of the title compound consists of a 1,4-bis(pyridin-3-ylmethoxy)benzene molecule, a nitrate anion and a CuII cation (Figure 1). The CuII cations lie on the inversion centers and are six-coordinated in the Jahn-Teller distored octahedral geometry environments defined by four N atoms forming the square planes and two O atoms locating the polar axis.

In the crystal, ribbon structures along [2 0 1] direction are built up by heterocyclic ligands bridging CuII cations (Figure 2, Table 1).

Related literature top

For the synthesis and background to network structures built up from flexible pyridyl-based aromatic ligands and transition metals, see Liu et al. (2010a,b).

Experimental top

The 1,4-bis(pyridin-3-ylmethoxy)benzene ligand was synthesized as the reference method (Liu et al., 2010a): A mixture of 1,4-dihydroxybenzene (1.1 g, 10 mmol), 3-chloromethylpyridine hydrochloride (3.28 g, 20 mmol) and NaOH (1.6 g, 40 mmol) in acetonitrile (50 ml) was refluxed under nitrogen with stirring for 24 h. After cooling to room temperature, the solution was filtered and the residue was washed with acetonitrile for several times. The mixed filtrate was droped into 300 ml water solution to get the powder crude product. A total of 2.51 g (yield 86%) pure product was obtained by recrystallizing from the mixed solution of 10 ml water and 10 ml me thanol. The title compound was synthesized by reaction of 1,4-bis(pyridin-3-ylmethoxy)benzene ligand (0.29 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.22 g, 1.0 mmol) in 5 ml water and 5 ml me thanol mixed solution. After filtration, blue block crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature for several days in 46% yield.

Refinement top

O4 atom of nitrate was disordered over two positions with site occupancy factors of ca 0.51 and 0.49, and then, the two positions were restraint refined with commond 'Iosr 0.01 O4 O4' '. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms, disordered O4' atom has been omitted for clarity.
[Figure 2] Fig. 2. A partial packing view, showing the ribbon structure along [2 0 1] direction. Disordered O4' atoms and no involving H atoms have been omitted for clarity.
catena-Poly[[bis(nitrato-κO)copper(II)]-bis[µ-1,4- bis(pyridin-3-ylmethoxy)benzene-κ2N:N']] top
Crystal data top
[Cu(NO3)2(C18H16N2O2)2]F(000) = 798
Mr = 772.22Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13022 reflections
a = 8.4859 (17) Åθ = 3.4–27.4°
b = 17.030 (3) ŵ = 0.72 mm1
c = 12.986 (4) ÅT = 291 K
β = 116.22 (2)°Block, blue
V = 1683.6 (7) Å30.20 × 0.18 × 0.17 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3831 independent reflections
Radiation source: fine-focus sealed tube3067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1110
Tmin = 0.867, Tmax = 0.889k = 2222
16256 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.4137P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.45 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(NO3)2(C18H16N2O2)2]V = 1683.6 (7) Å3
Mr = 772.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4859 (17) ŵ = 0.72 mm1
b = 17.030 (3) ÅT = 291 K
c = 12.986 (4) Å0.20 × 0.18 × 0.17 mm
β = 116.22 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3067 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.889Rint = 0.039
16256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
3831 reflectionsΔρmin = 0.26 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3511 (2)0.87028 (12)0.16557 (18)0.0353 (4)
H10.46980.86120.14320.042*
C20.2290 (3)0.82377 (13)0.25037 (19)0.0383 (5)
H20.26570.78370.28330.046*
C30.0520 (3)0.83705 (12)0.28601 (18)0.0351 (4)
H30.03170.80650.34350.042*
C40.0017 (2)0.89662 (11)0.23463 (17)0.0303 (4)
C50.1310 (2)0.93984 (12)0.14835 (18)0.0325 (4)
H50.09700.97880.11200.039*
C60.1879 (2)0.91934 (13)0.27306 (19)0.0385 (5)
H6A0.20700.93420.20730.046*
H6B0.21810.96370.32520.046*
C70.4713 (2)0.86583 (12)0.39043 (19)0.0372 (5)
C80.5671 (2)0.80017 (12)0.44675 (18)0.0350 (4)
H80.51010.75260.44150.042*
C90.7480 (2)0.80513 (12)0.51103 (18)0.0349 (4)
H90.81240.76090.54820.042*
C100.8320 (2)0.87615 (12)0.51957 (18)0.0360 (5)
C110.7367 (3)0.94163 (13)0.4634 (2)0.0419 (5)
H110.79370.98920.46900.050*
C120.5558 (3)0.93666 (13)0.3987 (2)0.0425 (5)
H120.49170.98080.36110.051*
C131.1170 (2)0.82248 (12)0.63460 (19)0.0381 (5)
H13A1.11710.78520.57810.046*
H13B1.07390.79630.68350.046*
C141.2990 (2)0.85426 (11)0.70499 (17)0.0305 (4)
C151.4412 (3)0.83865 (12)0.68279 (19)0.0375 (5)
H151.42820.80780.62050.045*
C161.6027 (3)0.86992 (12)0.75514 (19)0.0377 (5)
H161.69980.86000.74180.045*
C171.6204 (2)0.91564 (11)0.84668 (18)0.0319 (4)
H171.73060.93540.89550.038*
C181.3260 (2)0.90220 (11)0.79731 (16)0.0300 (4)
H181.23010.91390.81130.036*
Cu10.50001.00000.00000.03106 (12)
N10.30485 (19)0.92812 (9)0.11430 (14)0.0304 (3)
N21.48165 (18)0.93268 (9)0.86752 (13)0.0279 (3)
N30.8293 (2)0.86505 (11)0.01848 (17)0.0411 (4)
O10.29285 (18)0.85382 (9)0.32890 (17)0.0579 (5)
O21.01067 (18)0.88797 (9)0.57993 (16)0.0536 (5)
O30.74035 (19)0.92569 (8)0.02595 (14)0.0421 (4)
O40.9828 (11)0.8623 (6)0.035 (2)0.085 (4)0.49 (4)
O50.7554 (2)0.80297 (10)0.01836 (19)0.0654 (5)
O4'0.9848 (9)0.8748 (6)0.0923 (18)0.080 (4)0.51 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (9)0.0423 (11)0.0386 (11)0.0021 (8)0.0088 (8)0.0068 (9)
C20.0323 (10)0.0405 (11)0.0392 (12)0.0036 (9)0.0132 (9)0.0031 (9)
C30.0270 (9)0.0401 (11)0.0304 (10)0.0059 (8)0.0056 (8)0.0042 (8)
C40.0195 (8)0.0351 (10)0.0305 (10)0.0041 (7)0.0058 (7)0.0003 (8)
C50.0216 (9)0.0352 (10)0.0343 (10)0.0040 (7)0.0065 (8)0.0048 (8)
C60.0194 (9)0.0427 (11)0.0436 (12)0.0033 (8)0.0049 (9)0.0093 (9)
C70.0152 (8)0.0442 (11)0.0429 (12)0.0024 (8)0.0044 (8)0.0069 (9)
C80.0236 (9)0.0351 (10)0.0415 (12)0.0008 (8)0.0100 (9)0.0045 (9)
C90.0233 (9)0.0365 (10)0.0360 (11)0.0040 (8)0.0050 (8)0.0043 (8)
C100.0179 (8)0.0424 (11)0.0355 (11)0.0001 (8)0.0008 (8)0.0011 (9)
C110.0252 (10)0.0369 (11)0.0524 (14)0.0033 (8)0.0069 (9)0.0042 (10)
C120.0247 (10)0.0383 (11)0.0518 (13)0.0057 (8)0.0054 (9)0.0119 (10)
C130.0216 (9)0.0371 (10)0.0417 (12)0.0011 (8)0.0012 (8)0.0056 (9)
C140.0206 (8)0.0306 (9)0.0308 (10)0.0011 (7)0.0028 (8)0.0006 (8)
C150.0323 (10)0.0383 (11)0.0383 (11)0.0028 (8)0.0123 (9)0.0087 (9)
C160.0251 (9)0.0400 (11)0.0489 (13)0.0013 (8)0.0172 (9)0.0063 (9)
C170.0184 (8)0.0316 (9)0.0385 (11)0.0010 (7)0.0059 (8)0.0019 (8)
C180.0164 (8)0.0376 (10)0.0299 (10)0.0025 (7)0.0046 (7)0.0007 (8)
Cu10.01777 (16)0.03750 (19)0.02666 (18)0.00767 (13)0.00042 (12)0.00511 (14)
N10.0193 (7)0.0353 (8)0.0292 (8)0.0048 (6)0.0041 (6)0.0024 (7)
N20.0186 (7)0.0312 (8)0.0289 (8)0.0032 (6)0.0059 (6)0.0011 (6)
N30.0276 (9)0.0427 (10)0.0492 (11)0.0003 (7)0.0136 (8)0.0019 (8)
O10.0167 (7)0.0448 (9)0.0878 (14)0.0030 (6)0.0009 (8)0.0187 (9)
O20.0205 (7)0.0427 (9)0.0697 (12)0.0023 (6)0.0055 (7)0.0095 (8)
O30.0392 (8)0.0356 (7)0.0475 (9)0.0028 (6)0.0154 (7)0.0007 (7)
O40.028 (2)0.096 (4)0.124 (9)0.000 (2)0.027 (4)0.004 (5)
O50.0593 (11)0.0374 (9)0.0899 (15)0.0023 (8)0.0243 (11)0.0022 (9)
O4'0.022 (2)0.086 (4)0.102 (8)0.005 (2)0.001 (3)0.006 (4)
Geometric parameters (Å, º) top
C1—N11.341 (3)C13—O21.413 (2)
C1—C21.380 (3)C13—C141.505 (3)
C1—H10.9300C13—H13A0.9700
C2—C31.381 (3)C13—H13B0.9700
C2—H20.9300C14—C181.383 (3)
C3—C41.381 (3)C14—C151.385 (3)
C3—H30.9300C15—C161.381 (3)
C4—C51.384 (3)C15—H150.9300
C4—C61.509 (3)C16—C171.373 (3)
C5—N11.354 (2)C16—H160.9300
C5—H50.9300C17—N21.351 (2)
C6—O11.412 (2)C17—H170.9300
C6—H6A0.9700C18—N21.334 (2)
C6—H6B0.9700C18—H180.9300
C7—O11.380 (2)Cu1—N2i2.0153 (16)
C7—C121.383 (3)Cu1—N2ii2.0153 (16)
C7—C81.386 (3)Cu1—N12.0669 (16)
C8—C91.389 (3)Cu1—N1iii2.0669 (16)
C8—H80.9300Cu1—O32.5460 (15)
C9—C101.383 (3)N2—Cu1iv2.0153 (16)
C9—H90.9300N3—O41.226 (7)
C10—O21.380 (2)N3—O51.229 (2)
C10—C111.382 (3)N3—O4'1.253 (8)
C11—C121.389 (3)N3—O31.259 (2)
C11—H110.9300O4—O4'0.773 (8)
C12—H120.9300
N1—C1—C2122.43 (18)H13A—C13—H13B108.7
N1—C1—H1118.8C18—C14—C15117.88 (17)
C2—C1—H1118.8C18—C14—C13118.12 (17)
C1—C2—C3119.7 (2)C15—C14—C13124.00 (18)
C1—C2—H2120.1C16—C15—C14118.58 (19)
C3—C2—H2120.1C16—C15—H15120.7
C2—C3—C4118.72 (18)C14—C15—H15120.7
C2—C3—H3120.6C17—C16—C15120.29 (18)
C4—C3—H3120.6C17—C16—H16119.9
C3—C4—C5118.58 (17)C15—C16—H16119.9
C3—C4—C6122.69 (17)N2—C17—C16121.55 (17)
C5—C4—C6118.65 (18)N2—C17—H17119.2
N1—C5—C4123.05 (19)C16—C17—H17119.2
N1—C5—H5118.5N2—C18—C14123.85 (17)
C4—C5—H5118.5N2—C18—H18118.1
O1—C6—C4107.81 (17)C14—C18—H18118.1
O1—C6—H6A110.1N2i—Cu1—N2ii180.000 (1)
C4—C6—H6A110.1N2i—Cu1—N189.35 (6)
O1—C6—H6B110.1N2ii—Cu1—N190.65 (6)
C4—C6—H6B110.1N2i—Cu1—N1iii90.65 (6)
H6A—C6—H6B108.5N2ii—Cu1—N1iii89.35 (6)
O1—C7—C12124.94 (18)N1—Cu1—N1iii180.000 (1)
O1—C7—C8115.08 (18)N2i—Cu1—O386.22 (6)
C12—C7—C8119.98 (17)N2ii—Cu1—O393.78 (6)
C7—C8—C9120.21 (19)N1—Cu1—O392.59 (6)
C7—C8—H8119.9N1iii—Cu1—O387.41 (6)
C9—C8—H8119.9C1—N1—C5117.48 (16)
C10—C9—C8119.67 (18)C1—N1—Cu1118.31 (12)
C10—C9—H9120.2C5—N1—Cu1123.96 (13)
C8—C9—H9120.2C18—N2—C17117.81 (16)
O2—C10—C11114.98 (18)C18—N2—Cu1iv118.98 (12)
O2—C10—C9124.83 (18)C17—N2—Cu1iv123.21 (13)
C11—C10—C9120.18 (17)O4—N3—O5118.1 (5)
C10—C11—C12120.20 (19)O4—N3—O4'36.3 (4)
C10—C11—H11119.9O5—N3—O4'118.6 (4)
C12—C11—H11119.9O4—N3—O3119.1 (5)
C7—C12—C11119.76 (19)O5—N3—O3120.22 (18)
C7—C12—H12120.1O4'—N3—O3117.2 (5)
C11—C12—H12120.1C7—O1—C6117.53 (16)
O2—C13—C14106.10 (16)C10—O2—C13117.89 (16)
O2—C13—H13A110.5N3—O3—Cu1134.44 (13)
C14—C13—H13A110.5O4'—O4—N373.8 (10)
O2—C13—H13B110.5O4—O4'—N369.9 (10)
C14—C13—H13B110.5
Symmetry codes: (i) x+1, y+2, z+1; (ii) x2, y, z1; (iii) x1, y+2, z; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C18H16N2O2)2]
Mr772.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.4859 (17), 17.030 (3), 12.986 (4)
β (°) 116.22 (2)
V3)1683.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.867, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
16256, 3831, 3067
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.07
No. of reflections3831
No. of parameters251
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Youth Fundation of the Education Department of Sichuan Province, China (No. 08ZB031), Sichuan Agriculture University, Heilongjiang University and Heilongjiang Institute of Technology for supporting this work.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds