metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetyl­acetonato-κ2O,O′)(pyridine-κN)zinc(II)

aMaterials Research Center, Indian Institute of Science, Bangalore 560 012, India, bSolid State Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India, and cBioinformatics Infrastructure Facility, School of Life Science, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: rsrsl@uohyd.ernet.in

(Received 3 May 2011; accepted 25 May 2011; online 28 May 2011)

In the title compound, [Zn(C5H7O2)2(C5H5N)], the metal atom has square-pyramidal coordination geometry with the basal plane defined by the four O atoms of the chelating acetyl­acetonate ligands and with the axial position occupied by the pyridine N atom. The crystal packing is characterized by a C—H⋯O hydrogen-bonded ribbon structure approximately parallel to [10[\overline{1}]].

Related literature

For related structures, see: Brahma et al. (2008[Brahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140-m143.]); Neelgund et al. (2007[Neelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74-m76.]); Urs et al. (2001[Urs, U. K., Anitha, K. C., Raghunathan, K. L., Shivashankar, S. A., Robinson, W. T. & Row, T. N. G. (2001). Acta Cryst. E57, m242-m243.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H7O2)2(C5H5N)]

  • Mr = 342.68

  • Monoclinic, P 21 /c

  • a = 7.846 (5) Å

  • b = 27.047 (4) Å

  • c = 8.199 (5) Å

  • β = 117.984 (3)°

  • V = 1536.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 295 K

  • 0.32 × 0.23 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.64, Tmax = 0.83

  • 10840 measured reflections

  • 2939 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 0.99

  • 2939 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.50 3.141 (5) 126
C14—H14⋯O3ii 0.93 2.59 3.500 (5) 165
C4—H4A⋯O4iii 0.96 2.41 3.304 (5) 155
Symmetry codes: (i) x+1, y, z+1; (ii) -x+2, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound, [Zn(II)(C5H7O2)2(C5H5N)], is a mixed-ligand metal-organic precursor for chemical vapour deposition, with the Zn atom being five coordinate. Metal-organic (MO) complexes have been widely employed as precursors for chemical vapour deposition (CVD) for the growth of various thin films. The title complex, (I), has been synthesized and discussed here. Several such MOCVD precursors have been previously synthesized and characterized (Urs et al., 2001; Neelgund et al., 2007; Brahma et al., 2008; and references therein).

The structure of (I) with adopted atom-numbering scheme is shown in Fig 1. The coordination geometry around Zn(II) is square-pyramidal with the basal plane defined by four O atoms from two chelating acetylacetonate (acac) ligands and the axial position occupied by N atom from pyridine ring. The five-membered ring formed by acetylacetonate and Zn atom is significantly non-planar.

The geometric parameters for observed short contacts are listed in Table 1. Crystal packing diagram is shown in Fig 2. The intermolecular C13—H13···O2 and C14—H14..O3 interactions, combined together generate C—H···O bonded ribbon structure that is approximately parallel to [101]-direction. A short C4—H4A···O4 contact associated with methyl group is also observed in the crystal.

Related literature top

For related structures, see: Brahma et al. (2008); Neelgund et al. (2007); Urs et al. (2001).

Experimental top

The title complex was synthesized from their precursor hydrate complex, i.e. bis(acetylacetonato)aquazinc(II). Acetylacetone (10 mmol, 1.02 ml) was added to zinc diacetate dihydrate solution (5 mmol, 1.099 g; 30% ethanol-water mixture). Potassium hydroxide (KOH) solution (10 mmol, 0.56 g; 30% ethanol-water mixture) was added gradually to achieve a pH of 6–7. After stirring at room temperature for 1 hr, the mixture yielded a precipitate, which was filtered off and dried in a vacuum. The product was recrystallized from ethanol, giving a pure hydrate complex. To obtain the title complex from the hydrate, an ethanol solution of the hydrate was prepared and added in a (1:1) molar ratio to ethanol solutions of pyridine and stirred for 12 hr. Single crystals suitable for X-ray diffraction were grown by slow evaporation of the resultant solution in ethanol at low temperature.

Refinement top

The refections (1,0,0) and (1 1 0) were omitted as they were affected by extinction or absorption. Hydrogen atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)—H = 0.93 Å, C(methyl)—H = 0.96 Å, and Uiso = 1.2 Ueq(parent) [1.5 Ueq(parent) for methyl groups].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels.
[Figure 2] Fig. 2. C—H···O hydrogen bonded ribbon structure in (I)
Bis(acetylacetonato-κ2O,O')(pyridine-κN)zinc(II) top
Crystal data top
[Zn(C5H7O2)2(C5H5N)]F(000) = 712
Mr = 342.68Dx = 1.481 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2570 reflections
a = 7.846 (5) Åθ = 1.5–26°
b = 27.047 (4) ŵ = 1.61 mm1
c = 8.199 (5) ÅT = 295 K
β = 117.984 (3)°Needle, colorless
V = 1536.5 (14) Å30.32 × 0.23 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2939 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.64, Tmax = 0.83k = 3333
10840 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0548P)2]
where P = (Fo2 + 2Fc2)/3
2939 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Zn(C5H7O2)2(C5H5N)]V = 1536.5 (14) Å3
Mr = 342.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.846 (5) ŵ = 1.61 mm1
b = 27.047 (4) ÅT = 295 K
c = 8.199 (5) Å0.32 × 0.23 × 0.12 mm
β = 117.984 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2568 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.83Rint = 0.074
10840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.99Δρmax = 0.36 e Å3
2939 reflectionsΔρmin = 0.74 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0371 (4)0.17049 (11)0.0161 (4)0.0224 (7)
C20.9678 (5)0.12881 (11)0.1366 (5)0.0244 (7)
H20.96480.13060.25120.029*
C30.9046 (4)0.08575 (11)0.0895 (4)0.0212 (7)
C41.1147 (5)0.21268 (12)0.0821 (5)0.0320 (8)
H4A1.05780.24310.07150.048*
H4B1.08350.20740.20880.048*
H4C1.25240.21440.00790.048*
C50.8558 (5)0.04217 (12)0.2241 (4)0.0309 (8)
H5A0.95420.01730.17070.046*
H5B0.84920.05360.33790.046*
H5C0.73360.02840.24800.046*
C60.5739 (4)0.11064 (12)0.2966 (4)0.0208 (6)
C70.5487 (4)0.16068 (11)0.3209 (4)0.0236 (7)
H70.43730.16950.32710.028*
C80.6730 (4)0.19786 (11)0.3364 (4)0.0221 (7)
C90.4272 (4)0.07458 (12)0.2835 (5)0.0298 (8)
H9A0.39790.05260.18170.045*
H9B0.31230.09180.26430.045*
H9C0.47600.05580.39590.045*
C100.6314 (5)0.25065 (12)0.3684 (5)0.0335 (8)
H10A0.72810.26150.48750.050*
H10B0.50670.25230.36330.050*
H10C0.63290.27160.27450.050*
C111.2801 (4)0.13543 (11)0.6180 (4)0.0221 (7)
H111.27800.16880.58940.026*
C121.4307 (4)0.11783 (13)0.7803 (4)0.0285 (7)
H121.52660.13930.85950.034*
C131.4377 (4)0.06812 (12)0.8242 (4)0.0261 (7)
H131.53850.05570.93220.031*
C141.2931 (4)0.03751 (11)0.7054 (4)0.0238 (7)
H141.29270.00400.73070.029*
C151.1475 (4)0.05834 (11)0.5460 (4)0.0198 (6)
H151.04990.03760.46470.024*
N11.1384 (3)0.10638 (9)0.5017 (3)0.0176 (5)
O11.0419 (3)0.17533 (8)0.1475 (3)0.0242 (5)
O20.8871 (3)0.07874 (8)0.0621 (3)0.0217 (5)
O30.7104 (3)0.09184 (7)0.2837 (3)0.0210 (5)
O40.8203 (3)0.19193 (8)0.3239 (3)0.0263 (5)
Zn10.91346 (4)0.130795 (11)0.25584 (4)0.01638 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (14)0.0202 (16)0.0358 (17)0.0069 (12)0.0179 (14)0.0082 (13)
C20.0246 (17)0.0297 (19)0.0240 (16)0.0000 (12)0.0156 (14)0.0032 (13)
C30.0099 (13)0.0284 (18)0.0237 (15)0.0003 (12)0.0066 (12)0.0032 (13)
C40.0346 (18)0.0235 (18)0.049 (2)0.0021 (14)0.0294 (17)0.0071 (15)
C50.0325 (18)0.0310 (19)0.0335 (18)0.0077 (14)0.0189 (15)0.0101 (15)
C60.0128 (14)0.0285 (18)0.0217 (15)0.0005 (12)0.0086 (12)0.0032 (13)
C70.0154 (14)0.0273 (17)0.0314 (16)0.0022 (12)0.0138 (13)0.0016 (13)
C80.0194 (15)0.0228 (17)0.0247 (15)0.0033 (12)0.0109 (13)0.0002 (13)
C90.0214 (16)0.0290 (19)0.045 (2)0.0026 (13)0.0206 (15)0.0002 (15)
C100.0317 (18)0.0261 (19)0.050 (2)0.0026 (14)0.0256 (17)0.0053 (16)
C110.0168 (15)0.0191 (16)0.0288 (17)0.0032 (11)0.0095 (14)0.0016 (12)
C120.0177 (16)0.0283 (18)0.0298 (17)0.0054 (13)0.0030 (14)0.0026 (14)
C130.0151 (14)0.0343 (19)0.0226 (15)0.0043 (12)0.0035 (13)0.0038 (14)
C140.0223 (15)0.0200 (16)0.0297 (16)0.0029 (12)0.0128 (13)0.0049 (13)
C150.0152 (14)0.0197 (15)0.0235 (15)0.0041 (11)0.0082 (12)0.0016 (12)
N10.0119 (11)0.0196 (13)0.0204 (12)0.0004 (9)0.0069 (10)0.0020 (10)
O10.0262 (11)0.0171 (11)0.0339 (12)0.0033 (8)0.0177 (10)0.0000 (9)
O20.0180 (10)0.0248 (12)0.0246 (11)0.0059 (8)0.0119 (9)0.0050 (9)
O30.0141 (10)0.0197 (11)0.0314 (11)0.0002 (8)0.0126 (9)0.0009 (9)
O40.0217 (11)0.0194 (12)0.0430 (13)0.0010 (9)0.0193 (10)0.0040 (10)
Zn10.0114 (2)0.0171 (2)0.0196 (2)0.00060 (11)0.00634 (16)0.00057 (13)
Geometric parameters (Å, º) top
C1—O11.331 (4)C9—H9B0.9600
C1—C21.428 (4)C9—H9C0.9600
C1—C41.508 (4)C10—H10A0.9600
C2—C31.390 (4)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—O21.327 (3)C11—N11.329 (4)
C3—C51.535 (4)C11—C121.385 (4)
C4—H4A0.9600C11—H110.9300
C4—H4B0.9600C12—C131.386 (5)
C4—H4C0.9600C12—H120.9300
C5—H5A0.9600C13—C141.373 (4)
C5—H5B0.9600C13—H130.9300
C5—H5C0.9600C14—C151.389 (4)
C6—O31.234 (3)C14—H140.9300
C6—C71.396 (4)C15—N11.342 (4)
C6—C91.473 (4)C15—H150.9300
C7—C81.365 (4)N1—Zn12.068 (2)
C7—H70.9300O1—Zn12.024 (2)
C8—O41.218 (4)O2—Zn12.059 (2)
C8—C101.515 (4)O3—Zn12.011 (2)
C9—H9A0.9600O4—Zn11.991 (2)
O1—C1—C2126.6 (3)C8—C10—H10B109.5
O1—C1—C4117.5 (3)H10A—C10—H10B109.5
C2—C1—C4115.9 (3)C8—C10—H10C109.5
C3—C2—C1122.6 (3)H10A—C10—H10C109.5
C3—C2—H2118.7H10B—C10—H10C109.5
C1—C2—H2118.7N1—C11—C12122.4 (3)
O2—C3—C2126.0 (3)N1—C11—H11118.8
O2—C3—C5117.6 (3)C12—C11—H11118.8
C2—C3—C5116.4 (3)C11—C12—C13119.7 (3)
C1—C4—H4A109.5C11—C12—H12120.2
C1—C4—H4B109.5C13—C12—H12120.2
H4A—C4—H4B109.5C14—C13—C12118.8 (3)
C1—C4—H4C109.5C14—C13—H13120.6
H4A—C4—H4C109.5C12—C13—H13120.6
H4B—C4—H4C109.5C13—C14—C15117.7 (3)
C3—C5—H5A109.5C13—C14—H14121.2
C3—C5—H5B109.5C15—C14—H14121.2
H5A—C5—H5B109.5N1—C15—C14124.3 (3)
C3—C5—H5C109.5N1—C15—H15117.9
H5A—C5—H5C109.5C14—C15—H15117.9
H5B—C5—H5C109.5C11—N1—C15117.2 (3)
O3—C6—C7126.8 (3)C11—N1—Zn1123.7 (2)
O3—C6—C9113.6 (3)C15—N1—Zn1119.05 (19)
C7—C6—C9119.6 (3)C1—O1—Zn1126.83 (19)
C8—C7—C6125.8 (3)C3—O2—Zn1127.44 (19)
C8—C7—H7117.1C6—O3—Zn1124.0 (2)
C6—C7—H7117.1C8—O4—Zn1128.4 (2)
O4—C8—C7124.1 (3)O4—Zn1—O389.35 (9)
O4—C8—C10115.4 (3)O4—Zn1—O187.28 (9)
C7—C8—C10120.5 (3)O3—Zn1—O1161.13 (8)
C6—C9—H9A109.5O4—Zn1—O2150.12 (8)
C6—C9—H9B109.5O3—Zn1—O286.05 (8)
H9A—C9—H9B109.5O1—Zn1—O287.66 (9)
C6—C9—H9C109.5O4—Zn1—N1104.45 (10)
H9A—C9—H9C109.5O3—Zn1—N194.65 (10)
H9B—C9—H9C109.5O1—Zn1—N1104.18 (10)
C8—C10—H10A109.5O2—Zn1—N1105.34 (9)
O1—C1—C2—C33.7 (5)C8—O4—Zn1—O311.8 (3)
C4—C1—C2—C3175.4 (3)C8—O4—Zn1—O1149.6 (3)
C1—C2—C3—O25.0 (5)C8—O4—Zn1—O269.1 (3)
C1—C2—C3—C5173.4 (3)C8—O4—Zn1—N1106.4 (3)
O3—C6—C7—C80.6 (5)C6—O3—Zn1—O413.0 (2)
C9—C6—C7—C8179.5 (3)C6—O3—Zn1—O166.6 (4)
C6—C7—C8—O42.9 (5)C6—O3—Zn1—O2137.4 (2)
C6—C7—C8—C10178.1 (3)C6—O3—Zn1—N1117.5 (2)
N1—C11—C12—C130.9 (5)C1—O1—Zn1—O4133.7 (2)
C11—C12—C13—C140.5 (5)C1—O1—Zn1—O353.7 (4)
C12—C13—C14—C150.4 (4)C1—O1—Zn1—O216.8 (2)
C13—C14—C15—N10.5 (5)C1—O1—Zn1—N1122.1 (2)
C12—C11—N1—C150.9 (4)C3—O2—Zn1—O464.5 (3)
C12—C11—N1—Zn1178.9 (2)C3—O2—Zn1—O3146.3 (2)
C14—C15—N1—C110.8 (4)C3—O2—Zn1—O115.9 (2)
C14—C15—N1—Zn1178.8 (2)C3—O2—Zn1—N1119.9 (2)
C2—C1—O1—Zn111.0 (4)C11—N1—Zn1—O448.2 (2)
C4—C1—O1—Zn1169.9 (2)C15—N1—Zn1—O4133.9 (2)
C2—C3—O2—Zn18.4 (4)C11—N1—Zn1—O3138.7 (2)
C5—C3—O2—Zn1173.22 (19)C15—N1—Zn1—O343.4 (2)
C7—C6—O3—Zn19.9 (4)C11—N1—Zn1—O142.6 (2)
C9—C6—O3—Zn1170.01 (19)C15—N1—Zn1—O1135.3 (2)
C7—C8—O4—Zn16.3 (5)C11—N1—Zn1—O2134.1 (2)
C10—C8—O4—Zn1172.8 (2)C15—N1—Zn1—O243.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.503.141 (5)126
C14—H14···O3ii0.932.593.500 (5)165
C4—H4A···O4iii0.962.413.304 (5)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H7O2)2(C5H5N)]
Mr342.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.846 (5), 27.047 (4), 8.199 (5)
β (°) 117.984 (3)
V3)1536.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.32 × 0.23 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.64, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
10840, 2939, 2568
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 0.99
No. of reflections2939
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.74

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.503.141 (5)126
C14—H14···O3ii0.932.593.500 (5)165
C4—H4A···O4iii0.962.413.304 (5)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

We acknowledge the CCD facility, set up under the IRHPA–DST program at the Indian Institute of Science, Bangalore. SB thanks the Council of Scientific and Industrial research (CSIR), New Delhi, for the award of research associateship. RSR gratefully acknowledges the CSIR for funding under the scientist's pool scheme.

References

First citationBrahma, S., Sachin, H. P., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, m140–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNeelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74–m76.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrs, U. K., Anitha, K. C., Raghunathan, K. L., Shivashankar, S. A., Robinson, W. T. & Row, T. N. G. (2001). Acta Cryst. E57, m242–m243.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds