organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(5-Bromo­pent­yl­oxy)meth­yl]pyrene

aNingbo University of Technology, Ningbo 315016, People's Republic of China
*Correspondence e-mail: xunwenxiao@gmail.com

(Received 12 May 2011; accepted 13 May 2011; online 20 May 2011)

In the title compound, C22H21BrO, other than the Br atom, the non-H atoms are approximately co-planar [maxium deviation = 0.178 (2) Å] and the alk­oxy chain shows an all-anti conformation. A weak inter­molecular C—H⋯Br hydrogen bond contributes to the stabilization of the crystal structure.

Related literature

For the synthesis of pyrene derivatives, see Filby & Steed (2006[Filby, M. H. & Steed, J. W. (2006). Coord. Chem. Rev. 250, 3200-3218.]). For the use of pyrenes as fluorescence sensors, see: Bell & Hext (2004[Bell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589-598.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Jebas, S. R., Maity, A. C., Das, N. K. & Goswami, S. (2009). Acta Cryst. E65, o891.]); Gruber et al. (2010[Gruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.]); Xiao et al. (2005[Xiao, X., Xu, W., Zhang, D., Xu, H., Liu, L. & Zhu, D. (2005). New. J. Chem. pp. 1291-1294.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21BrO

  • Mr = 381.30

  • Triclinic, [P \overline 1]

  • a = 7.417 (2) Å

  • b = 7.4817 (16) Å

  • c = 17.545 (5) Å

  • α = 79.924 (19)°

  • β = 88.90 (2)°

  • γ = 64.295 (12)°

  • V = 861.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 223 K

  • 0.45 × 0.40 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.373, Tmax = 0.616

  • 7097 measured reflections

  • 3085 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.047

  • S = 0.88

  • 3085 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br1i 0.94 3.02 3.869 (2) 151
Symmetry code: (i) x, y-1, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As a fluorogenic unit, pyrene is one of the most useful fluorescene probe because of its relatively efficient excimer formation and emission. In this respect, the title compound was prepared as part of our research on the solid state structure of fluorogenic tetrathiafulvalene with possible molecular switch (Xiao et al.., 2005).

The bond lengths and bond angles of the title compound are found to have norml values (Fun et al.., 2009 Gruber et al.., 2010). Expect the Br atom and H atoms, the molecule is essentially planar with the maximum deviation from planarity being 0.1781 (21) Å. In the substitute alkoxy chain, expect the Br atom, it shows the typical all-anti conformation (Fig.1).

The crystal packing is stabilized by C—H···Br intermolecular hydrogen bonding (table.1) (Fig.2).

Related literature top

For the synthesis of pyrene derivatives, see Filby & Steed (2006); For the use of pyrenes as fluorescence sensors, see: Bell & Hext (2004). For related structures, see: Fun et al. (2009); Gruber et al. (2010); Xiao et al. (2005).

Experimental top

The title compound was synthesiaed according to a literature procedure (Xiao et al.., 2005). Slow evaporation of a solution in THF gave single crystals suitable for X–ray analysis.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99Å and Uiso = 1.2–1.5 Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram view along the crystallographic ib/i axis. Dashed lines indicate the hydrogen bonding.
1-[(5-Bromopentyloxy)methyl]pyrene top
Crystal data top
C22H21BrOZ = 2
Mr = 381.30F(000) = 392
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.417 (2) ÅCell parameters from 4242 reflections
b = 7.4817 (16) Åθ = 3.1–27.5°
c = 17.545 (5) ŵ = 2.39 mm1
α = 79.924 (19)°T = 223 K
β = 88.90 (2)°Block, colorless
γ = 64.295 (12)°0.45 × 0.40 × 0.20 mm
V = 861.9 (4) Å3
Data collection top
Rigaku Saturn
diffractometer
3085 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 99
Tmin = 0.373, Tmax = 0.616l = 2121
7097 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0129P)2]
where P = (Fo2 + 2Fc2)/3
3085 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C22H21BrOγ = 64.295 (12)°
Mr = 381.30V = 861.9 (4) Å3
Triclinic, P1Z = 2
a = 7.417 (2) ÅMo Kα radiation
b = 7.4817 (16) ŵ = 2.39 mm1
c = 17.545 (5) ÅT = 223 K
α = 79.924 (19)°0.45 × 0.40 × 0.20 mm
β = 88.90 (2)°
Data collection top
Rigaku Saturn
diffractometer
3085 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2399 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.616Rint = 0.038
7097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.88Δρmax = 0.31 e Å3
3085 reflectionsΔρmin = 0.36 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30010 (4)0.85258 (4)0.015557 (11)0.04908 (9)
O10.35680 (18)0.46204 (17)0.40464 (6)0.0263 (3)
C10.2422 (3)0.4448 (3)0.53439 (9)0.0217 (4)
C20.3303 (3)0.2367 (3)0.54290 (9)0.0246 (4)
H20.39410.17670.50100.030*
C30.3272 (3)0.1144 (3)0.61153 (9)0.0272 (4)
H30.38910.02660.61560.033*
C40.2324 (3)0.1992 (3)0.67517 (9)0.0222 (4)
C50.2242 (3)0.0795 (3)0.74734 (9)0.0278 (4)
H50.28440.06190.75280.033*
C60.1319 (3)0.1649 (3)0.80776 (9)0.0285 (4)
H60.12860.08180.85410.034*
C70.0391 (3)0.3794 (3)0.80237 (9)0.0250 (4)
C80.0539 (3)0.4721 (3)0.86452 (10)0.0308 (5)
H80.05620.39200.91190.037*
C90.1421 (3)0.6798 (3)0.85704 (10)0.0368 (5)
H90.20310.73930.89940.044*
C100.1415 (3)0.8005 (3)0.78816 (10)0.0344 (5)
H100.20320.94160.78400.041*
C110.0503 (3)0.7163 (3)0.72412 (9)0.0266 (4)
C120.0449 (3)0.8358 (3)0.65197 (10)0.0300 (4)
H120.10700.97720.64640.036*
C130.0471 (3)0.7513 (3)0.59160 (10)0.0274 (4)
H130.04810.83520.54510.033*
C140.1431 (3)0.5368 (3)0.59663 (9)0.0209 (4)
C150.1394 (2)0.4125 (3)0.66725 (9)0.0203 (4)
C160.0418 (3)0.5033 (3)0.73151 (9)0.0218 (4)
C170.2486 (3)0.5781 (3)0.46037 (9)0.0248 (4)
H17A0.11140.66790.43900.030*
H17B0.31220.66200.47160.030*
C180.3537 (3)0.5952 (3)0.33503 (9)0.0240 (4)
H18A0.41670.67990.34610.029*
H18B0.21450.68390.31580.029*
C190.4640 (3)0.4774 (3)0.27364 (9)0.0238 (4)
H19A0.40140.39250.26250.029*
H19B0.60350.38930.29250.029*
C200.4582 (3)0.6222 (3)0.19985 (9)0.0254 (4)
H20A0.31800.71340.18300.030*
H20B0.52320.70450.21170.030*
C210.5605 (3)0.5177 (3)0.13337 (9)0.0289 (4)
H21A0.69770.41880.15150.035*
H21B0.48900.44380.11880.035*
C220.5683 (3)0.6598 (3)0.06263 (10)0.0380 (5)
H22A0.64530.58110.02420.046*
H22B0.63870.73480.07700.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06041 (17)0.05227 (16)0.02991 (11)0.02606 (13)0.00843 (10)0.00909 (9)
O10.0320 (8)0.0235 (7)0.0188 (6)0.0089 (6)0.0073 (6)0.0022 (5)
C10.0203 (10)0.0251 (11)0.0197 (8)0.0110 (9)0.0006 (7)0.0007 (8)
C20.0273 (11)0.0246 (11)0.0209 (8)0.0098 (9)0.0045 (8)0.0058 (8)
C30.0318 (12)0.0187 (11)0.0280 (9)0.0085 (9)0.0022 (8)0.0038 (8)
C40.0226 (10)0.0226 (11)0.0210 (8)0.0101 (9)0.0007 (8)0.0027 (8)
C50.0329 (12)0.0193 (11)0.0274 (9)0.0099 (10)0.0009 (9)0.0016 (8)
C60.0323 (12)0.0316 (12)0.0214 (9)0.0170 (10)0.0001 (8)0.0037 (8)
C70.0243 (11)0.0351 (12)0.0199 (8)0.0173 (10)0.0025 (8)0.0042 (8)
C80.0331 (12)0.0414 (13)0.0229 (9)0.0217 (11)0.0066 (9)0.0039 (9)
C90.0422 (13)0.0464 (14)0.0310 (10)0.0243 (12)0.0161 (10)0.0184 (10)
C100.0384 (13)0.0284 (12)0.0384 (11)0.0135 (10)0.0135 (10)0.0154 (9)
C110.0274 (11)0.0275 (12)0.0274 (9)0.0133 (10)0.0052 (8)0.0084 (8)
C120.0350 (12)0.0179 (11)0.0333 (10)0.0076 (10)0.0082 (9)0.0066 (8)
C130.0332 (11)0.0240 (11)0.0223 (9)0.0119 (10)0.0025 (8)0.0005 (8)
C140.0202 (10)0.0225 (11)0.0199 (8)0.0100 (9)0.0005 (7)0.0024 (8)
C150.0192 (10)0.0236 (11)0.0186 (8)0.0101 (9)0.0003 (7)0.0026 (7)
C160.0199 (10)0.0257 (11)0.0214 (8)0.0118 (9)0.0005 (7)0.0037 (8)
C170.0255 (11)0.0267 (11)0.0206 (8)0.0099 (9)0.0036 (8)0.0044 (8)
C180.0272 (11)0.0251 (11)0.0179 (8)0.0114 (9)0.0013 (8)0.0008 (8)
C190.0255 (11)0.0236 (11)0.0215 (8)0.0106 (9)0.0020 (8)0.0022 (8)
C200.0287 (11)0.0274 (11)0.0200 (8)0.0121 (9)0.0049 (8)0.0054 (8)
C210.0320 (11)0.0321 (12)0.0216 (8)0.0139 (10)0.0039 (8)0.0033 (8)
C220.0406 (13)0.0491 (14)0.0252 (9)0.0213 (11)0.0063 (9)0.0050 (9)
Geometric parameters (Å, º) top
Br1—C221.969 (2)C11—C161.418 (2)
O1—C171.4200 (19)C11—C121.427 (2)
O1—C181.4283 (19)C12—C131.349 (2)
C1—C21.383 (2)C12—H120.9400
C1—C141.414 (2)C13—C141.433 (2)
C1—C171.506 (2)C13—H130.9400
C2—C31.386 (2)C14—C151.421 (2)
C2—H20.9400C15—C161.437 (2)
C3—C41.405 (2)C17—H17A0.9800
C3—H30.9400C17—H17B0.9800
C4—C151.419 (2)C18—C191.510 (2)
C4—C51.434 (2)C18—H18A0.9800
C5—C61.353 (2)C18—H18B0.9800
C5—H50.9400C19—C201.524 (2)
C6—C71.432 (3)C19—H19A0.9800
C6—H60.9400C19—H19B0.9800
C7—C81.402 (2)C20—C211.523 (2)
C7—C161.420 (2)C20—H20A0.9800
C8—C91.382 (3)C20—H20B0.9800
C8—H80.9400C21—C221.504 (2)
C9—C101.378 (3)C21—H21A0.9800
C9—H90.9400C21—H21B0.9800
C10—C111.402 (2)C22—H22A0.9800
C10—H100.9400C22—H22B0.9800
C17—O1—C18109.08 (13)C4—C15—C14120.57 (15)
C2—C1—C14119.58 (16)C4—C15—C16119.62 (15)
C2—C1—C17121.89 (15)C14—C15—C16119.80 (16)
C14—C1—C17118.53 (16)C11—C16—C7120.18 (15)
C1—C2—C3121.76 (16)C11—C16—C15119.89 (16)
C1—C2—H2119.1C7—C16—C15119.94 (16)
C3—C2—H2119.1O1—C17—C1111.32 (14)
C2—C3—C4120.58 (17)O1—C17—H17A109.4
C2—C3—H3119.7C1—C17—H17A109.4
C4—C3—H3119.7O1—C17—H17B109.4
C3—C4—C15118.45 (15)C1—C17—H17B109.4
C3—C4—C5122.80 (16)H17A—C17—H17B108.0
C15—C4—C5118.75 (15)O1—C18—C19110.73 (14)
C6—C5—C4121.65 (17)O1—C18—H18A109.5
C6—C5—H5119.2C19—C18—H18A109.5
C4—C5—H5119.2O1—C18—H18B109.5
C5—C6—C7121.20 (16)C19—C18—H18B109.5
C5—C6—H6119.4H18A—C18—H18B108.1
C7—C6—H6119.4C18—C19—C20109.88 (15)
C8—C7—C16118.66 (17)C18—C19—H19A109.7
C8—C7—C6122.51 (16)C20—C19—H19A109.7
C16—C7—C6118.83 (15)C18—C19—H19B109.7
C9—C8—C7120.82 (17)C20—C19—H19B109.7
C9—C8—H8119.6H19A—C19—H19B108.2
C7—C8—H8119.6C21—C20—C19113.91 (15)
C10—C9—C8120.69 (16)C21—C20—H20A108.8
C10—C9—H9119.7C19—C20—H20A108.8
C8—C9—H9119.7C21—C20—H20B108.8
C9—C10—C11121.02 (18)C19—C20—H20B108.8
C9—C10—H10119.5H20A—C20—H20B107.7
C11—C10—H10119.5C22—C21—C20113.79 (15)
C10—C11—C16118.63 (16)C22—C21—H21A108.8
C10—C11—C12122.79 (17)C20—C21—H21A108.8
C16—C11—C12118.58 (15)C22—C21—H21B108.8
C13—C12—C11121.76 (17)C20—C21—H21B108.8
C13—C12—H12119.1H21A—C21—H21B107.7
C11—C12—H12119.1C21—C22—Br1112.67 (13)
C12—C13—C14121.56 (16)C21—C22—H22A109.1
C12—C13—H13119.2Br1—C22—H22A109.1
C14—C13—H13119.2C21—C22—H22B109.1
C1—C14—C15119.04 (16)Br1—C22—H22B109.1
C1—C14—C13122.55 (16)H22A—C22—H22B107.8
C15—C14—C13118.41 (15)
C14—C1—C2—C31.0 (3)C3—C4—C15—C16179.80 (15)
C17—C1—C2—C3178.85 (15)C5—C4—C15—C160.8 (2)
C1—C2—C3—C40.3 (3)C1—C14—C15—C40.4 (2)
C2—C3—C4—C150.3 (2)C13—C14—C15—C4179.97 (15)
C2—C3—C4—C5179.71 (16)C1—C14—C15—C16179.12 (14)
C3—C4—C5—C6179.99 (16)C13—C14—C15—C160.5 (2)
C15—C4—C5—C60.6 (2)C10—C11—C16—C70.6 (3)
C4—C5—C6—C70.4 (3)C12—C11—C16—C7179.87 (15)
C5—C6—C7—C8178.58 (16)C10—C11—C16—C15178.99 (15)
C5—C6—C7—C161.2 (3)C12—C11—C16—C150.5 (2)
C16—C7—C8—C90.3 (3)C8—C7—C16—C110.8 (2)
C6—C7—C8—C9179.91 (17)C6—C7—C16—C11179.42 (16)
C7—C8—C9—C100.3 (3)C8—C7—C16—C15178.81 (15)
C8—C9—C10—C110.5 (3)C6—C7—C16—C150.9 (2)
C9—C10—C11—C160.0 (3)C4—C15—C16—C11179.61 (15)
C9—C10—C11—C12179.44 (17)C14—C15—C16—C110.1 (2)
C10—C11—C12—C13178.72 (17)C4—C15—C16—C70.0 (2)
C16—C11—C12—C130.7 (3)C14—C15—C16—C7179.54 (14)
C11—C12—C13—C140.4 (3)C18—O1—C17—C1178.43 (13)
C2—C1—C14—C151.0 (2)C2—C1—C17—O11.1 (2)
C17—C1—C14—C15178.83 (14)C14—C1—C17—O1178.76 (13)
C2—C1—C14—C13179.42 (16)C17—O1—C18—C19178.88 (13)
C17—C1—C14—C130.7 (2)O1—C18—C19—C20179.77 (13)
C12—C13—C14—C1179.34 (16)C18—C19—C20—C21178.27 (14)
C12—C13—C14—C150.2 (3)C19—C20—C21—C22175.62 (14)
C3—C4—C15—C140.3 (2)C20—C21—C22—Br163.25 (17)
C5—C4—C15—C14179.68 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.943.023.869 (2)151
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC22H21BrO
Mr381.30
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.417 (2), 7.4817 (16), 17.545 (5)
α, β, γ (°)79.924 (19), 88.90 (2), 64.295 (12)
V3)861.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.39
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.373, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
7097, 3085, 2399
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.047, 0.88
No. of reflections3085
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br1i0.943.023.869 (2)151
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

This work was supported by the NNS (20902051), the Education Committee of Zhejiang Province (Z200906833), Ningbo Natural Science (2010 A610186) and the Ministry of Education Scientific Research Foundation for Returned Overseas Scholars.

References

First citationBell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589–598.  PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFilby, M. H. & Steed, J. W. (2006). Coord. Chem. Rev. 250, 3200–3218.  CrossRef CAS Google Scholar
First citationFun, H.-K., Jebas, S. R., Maity, A. C., Das, N. K. & Goswami, S. (2009). Acta Cryst. E65, o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2010). Acta Cryst. E66, o443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, X., Xu, W., Zhang, D., Xu, H., Liu, L. & Zhu, D. (2005). New. J. Chem. pp. 1291–1294.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds