organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Cyano­ethyl­sulfan­yl)-5′-(pyridin-4-yl)tetra­thia­fulvalene

aDepartment of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, People's Republic of China
*Correspondence e-mail: xunwenxiao@gmail.com

(Received 16 May 2011; accepted 17 May 2011; online 20 May 2011)

In the title compound, C14H10N2S5 [systematic name; 3-({2-[4-(pyridin-4-yl)-2H-1,3-dithiol-2-yl­idene]-2H-1,3-dithiol-4-yl}sul­fan­yl)propane­nitrile], all of the non-H atoms except for the cyano­ethyl­sulfanyl group, are approximately coplanar [maxium deviation = 0.090 (3) Å]. The two five-membered 1,3-dithiole rings are twisted by 2.6 (2)°. Weak inter­molecular S⋯S inter­actions occur [3.586 (4) and 3.530 (4) Å].

Related literature

For background to the chemistry of prridine-based tetra­thia­fulvalenes, see: Fabre (2004[Fabre, J. M. (2004). Chem. Rev. 104, 5133-5150.]); Zhu et al. (2007[Zhu, Q. Y., Liu, Y., Lu, W., Zhang, Y., Bian, G. Q., Niu, G. Y. & Dai, J. (2007). Inorg. Chem. 46, 10065-10070.]). For the preparation of the title compound, see: Jia et al. (2001[Jia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Chem, 3, 1941-1944.]); Zhu et al. (2010[Zhu, Q. Y., Liu, Y., Lu, Z. J., Wang, J. P., Huo, L. B., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713-717.]). For related structures, see: Han et al. (2007[Han, Y. F., Zhang, J. S., Lin, Y. J., Dai, J. & Jin, G. X. (2007). J. Organomet. Chem. 692, 4545-4550.]); Zhao et al. (2008[Zhao, B.-T., Ding, J.-J. & Qu, G.-R. (2008). Acta Cryst. E64, o2078.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2S5

  • Mr = 366.54

  • Monoclinic, P 21 /c

  • a = 14.6231 (18) Å

  • b = 10.7197 (12) Å

  • c = 9.9211 (12) Å

  • β = 94.775 (4)°

  • V = 1549.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 223 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.613, Tmax = 0.856

  • 7658 measured reflections

  • 2869 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.126

  • S = 1.11

  • 2869 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrystalClear (Rigaku, 2005)[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]; cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tetrathiafulvalene (TTF) and its derivatives are strong electron donors (D). Many electron acceptors (A) have been connected to TTF to afford electron D—A system to build molecular level devices, such as molecular rectifiers and molecular switches. In order to obtain materials in molecular electronics, currently, our research is focus on the synthesis and crystal structures of TTF derivatives. In the title compound, the substituent group of the TTF core are located in opposite direction, resulting in chair-like molecular comformations. All bonds lengths and bond angles are found to within the range for neutral TTF (Han et al. 2007). In addition, the pyridyl group and tetrathiafulvalene motif are coplanar, the non-H atoms of the two group lie on a plan [maxium deviation is 0.0908 (33)?Å] (Fig.1). Inter-molecular interaction involving S(2)···S(1) 3.586 (4) Å and S(2)···S(3) 3.530 (4) Å are present consolidating the crystal packing. (Fig.2).

Related literature top

For background to the chemistry of prridine-based tetrathiafulvalenes, see: Fabre (2004); Zhu et al. (2007). For the preparation of the title compound, see: Jia et al. (2001); Zhu et al. (2010). For related structures, see: Han et al. (2007); Zhao et al. (2008).

Experimental top

The title compound was prepared according to the literature (Jia et al.,2001) (Zhu et al.,2007). Red crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram view along the crystallographic b-axis.
3-({2-[4-(pyridin-4-yl)-2H-1,3-dithiol-2-ylidene]-2H-1,3-dithiol- 4-yl}sulfanyl)propanenitrile top
Crystal data top
C14H10N2S5F(000) = 752
Mr = 366.54Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 5787 reflections
a = 14.6231 (18) Åθ = 3.1–27.5°
b = 10.7197 (12) ŵ = 0.74 mm1
c = 9.9211 (12) ÅT = 223 K
β = 94.775 (4)°Block, red
V = 1549.8 (3) Å30.50 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2869 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.1°
ω scansh = 1716
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1212
Tmin = 0.613, Tmax = 0.856l = 129
7658 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.3388P]
where P = (Fo2 + 2Fc2)/3
2869 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H10N2S5V = 1549.8 (3) Å3
Mr = 366.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6231 (18) ŵ = 0.74 mm1
b = 10.7197 (12) ÅT = 223 K
c = 9.9211 (12) Å0.50 × 0.20 × 0.20 mm
β = 94.775 (4)°
Data collection top
Rigaku Saturn
diffractometer
2869 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2268 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.856Rint = 0.043
7658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.11Δρmax = 0.51 e Å3
2869 reflectionsΔρmin = 0.32 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45140 (7)0.17432 (9)0.11234 (11)0.0324 (3)
S20.57042 (7)0.02950 (10)0.22543 (11)0.0362 (3)
S30.61033 (7)0.25532 (10)0.08148 (12)0.0377 (3)
S40.72869 (7)0.05022 (10)0.03146 (11)0.0361 (3)
S50.87437 (8)0.10167 (11)0.16139 (12)0.0438 (3)
N10.1558 (3)0.1902 (4)0.3981 (5)0.0555 (11)
N20.9396 (3)0.4512 (4)0.1998 (5)0.0619 (12)
C10.1881 (3)0.2455 (5)0.2923 (6)0.0601 (14)
H10.15320.31070.25080.072*
C20.2690 (3)0.2145 (4)0.2386 (5)0.0459 (12)
H20.28650.25620.16150.055*
C30.3240 (3)0.1224 (4)0.2984 (4)0.0323 (9)
C40.2907 (3)0.0618 (4)0.4090 (5)0.0451 (12)
H40.32420.00350.45280.054*
C50.2082 (3)0.0989 (5)0.4532 (5)0.0529 (14)
H50.18730.05680.52780.063*
C60.4131 (3)0.0883 (4)0.2484 (4)0.0321 (9)
C70.4680 (3)0.0036 (4)0.2963 (4)0.0345 (10)
H70.45120.05380.36800.041*
C80.5581 (2)0.0973 (3)0.1123 (4)0.0284 (9)
C90.6232 (3)0.1293 (4)0.0326 (4)0.0298 (9)
C100.7170 (3)0.2350 (4)0.1449 (4)0.0348 (10)
H100.73630.28860.21200.042*
C110.7705 (3)0.1427 (4)0.0967 (4)0.0350 (10)
C120.9586 (3)0.1601 (5)0.0324 (5)0.0484 (12)
H12A0.95490.11030.04980.058*
H12B1.01990.14780.06320.058*
C130.9480 (3)0.2965 (5)0.0034 (5)0.0511 (13)
H13A0.89150.30640.04910.061*
H13B0.99950.32070.06760.061*
C140.9445 (3)0.3823 (5)0.1136 (5)0.0458 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0303 (5)0.0311 (5)0.0363 (6)0.0025 (4)0.0064 (4)0.0022 (4)
S20.0359 (6)0.0343 (6)0.0396 (7)0.0060 (5)0.0090 (5)0.0060 (5)
S30.0350 (6)0.0345 (6)0.0439 (7)0.0004 (5)0.0048 (5)0.0076 (5)
S40.0306 (5)0.0372 (6)0.0413 (7)0.0026 (5)0.0079 (5)0.0050 (5)
S50.0359 (6)0.0507 (7)0.0469 (8)0.0030 (5)0.0165 (5)0.0037 (6)
N10.036 (2)0.063 (3)0.070 (3)0.005 (2)0.020 (2)0.014 (2)
N20.069 (3)0.056 (3)0.062 (3)0.004 (2)0.014 (2)0.003 (2)
C10.036 (3)0.066 (3)0.080 (4)0.007 (2)0.011 (3)0.004 (3)
C20.037 (2)0.051 (3)0.051 (3)0.003 (2)0.010 (2)0.010 (2)
C30.027 (2)0.032 (2)0.037 (3)0.0060 (17)0.0039 (18)0.0083 (18)
C40.044 (3)0.042 (3)0.051 (3)0.000 (2)0.017 (2)0.002 (2)
C50.047 (3)0.056 (3)0.060 (3)0.013 (3)0.025 (3)0.007 (3)
C60.031 (2)0.030 (2)0.036 (2)0.0051 (18)0.0087 (18)0.0032 (18)
C70.037 (2)0.038 (2)0.030 (2)0.0037 (19)0.0103 (18)0.0014 (19)
C80.0252 (19)0.027 (2)0.033 (2)0.0019 (16)0.0001 (17)0.0029 (17)
C90.030 (2)0.030 (2)0.030 (2)0.0032 (17)0.0018 (17)0.0028 (17)
C100.036 (2)0.039 (2)0.030 (2)0.0086 (19)0.0072 (19)0.0033 (19)
C110.031 (2)0.039 (2)0.036 (3)0.0080 (19)0.0085 (19)0.000 (2)
C120.031 (2)0.063 (3)0.052 (3)0.000 (2)0.009 (2)0.007 (3)
C130.041 (3)0.069 (3)0.043 (3)0.010 (2)0.007 (2)0.007 (3)
C140.039 (3)0.050 (3)0.049 (3)0.003 (2)0.010 (2)0.013 (3)
Geometric parameters (Å, º) top
S1—C61.764 (4)C3—C41.398 (6)
S1—C81.765 (4)C3—C61.478 (5)
S2—C71.729 (4)C4—C51.376 (6)
S2—C81.762 (4)C4—H40.9400
S3—C101.744 (4)C5—H50.9400
S3—C91.762 (4)C6—C71.333 (6)
S4—C91.761 (4)C7—H70.9400
S4—C111.761 (4)C8—C91.333 (5)
S5—C111.753 (4)C10—C111.326 (6)
S5—C121.812 (5)C10—H100.9400
N1—C11.327 (7)C12—C131.515 (6)
N1—C51.331 (7)C12—H12A0.9800
N2—C141.128 (6)C12—H12B0.9800
C1—C21.377 (6)C13—C141.479 (7)
C1—H10.9400C13—H13A0.9800
C2—C31.377 (6)C13—H13B0.9800
C2—H20.9400
C6—S1—C895.29 (18)S2—C7—H7120.3
C7—S2—C895.10 (19)C9—C8—S2122.4 (3)
C10—S3—C994.88 (19)C9—C8—S1123.7 (3)
C9—S4—C1195.20 (19)S2—C8—S1113.8 (2)
C11—S5—C12102.3 (2)C8—C9—S4123.3 (3)
C1—N1—C5115.0 (4)C8—C9—S3122.3 (3)
N1—C1—C2124.8 (5)S4—C9—S3114.3 (2)
N1—C1—H1117.6C11—C10—S3118.8 (3)
C2—C1—H1117.6C11—C10—H10120.6
C3—C2—C1119.8 (4)S3—C10—H10120.6
C3—C2—H2120.1C10—C11—S5123.9 (3)
C1—C2—H2120.1C10—C11—S4116.8 (3)
C2—C3—C4116.2 (4)S5—C11—S4119.1 (2)
C2—C3—C6122.2 (4)C13—C12—S5115.0 (3)
C4—C3—C6121.6 (4)C13—C12—H12A108.5
C5—C4—C3119.2 (4)S5—C12—H12A108.5
C5—C4—H4120.4C13—C12—H12B108.5
C3—C4—H4120.4S5—C12—H12B108.5
N1—C5—C4124.9 (5)H12A—C12—H12B107.5
N1—C5—H5117.6C14—C13—C12114.5 (4)
C4—C5—H5117.6C14—C13—H13A108.6
C7—C6—C3125.8 (4)C12—C13—H13A108.6
C7—C6—S1116.0 (3)C14—C13—H13B108.6
C3—C6—S1118.2 (3)C12—C13—H13B108.6
C6—C7—S2119.3 (3)H13A—C13—H13B107.6
C6—C7—H7120.3N2—C14—C13177.0 (5)
C5—N1—C1—C20.3 (8)C6—S1—C8—S26.1 (2)
N1—C1—C2—C32.1 (8)S2—C8—C9—S40.5 (5)
C1—C2—C3—C42.7 (7)S1—C8—C9—S4178.9 (2)
C1—C2—C3—C6177.7 (4)S2—C8—C9—S3179.4 (2)
C2—C3—C4—C51.7 (6)S1—C8—C9—S31.0 (5)
C6—C3—C4—C5178.7 (4)C11—S4—C9—C8178.6 (4)
C1—N1—C5—C40.7 (8)C11—S4—C9—S31.4 (3)
C3—C4—C5—N10.0 (8)C10—S3—C9—C8179.1 (4)
C2—C3—C6—C7176.5 (4)C10—S3—C9—S40.8 (3)
C4—C3—C6—C73.1 (7)C9—S3—C10—C110.3 (4)
C2—C3—C6—S12.9 (6)S3—C10—C11—S5173.8 (2)
C4—C3—C6—S1177.5 (3)S3—C10—C11—S41.4 (5)
C8—S1—C6—C74.2 (4)C12—S5—C11—C10106.0 (4)
C8—S1—C6—C3176.3 (3)C12—S5—C11—S479.0 (3)
C3—C6—C7—S2179.7 (3)C9—S4—C11—C101.6 (4)
S1—C6—C7—S20.9 (5)C9—S4—C11—S5173.7 (3)
C8—S2—C7—C63.0 (4)C11—S5—C12—C1353.5 (4)
C7—S2—C8—C9175.7 (4)S5—C12—C13—C1453.5 (5)
C7—S2—C8—S15.7 (3)C12—C13—C14—N2152 (11)
C6—S1—C8—C9175.4 (4)

Experimental details

Crystal data
Chemical formulaC14H10N2S5
Mr366.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)14.6231 (18), 10.7197 (12), 9.9211 (12)
β (°) 94.775 (4)
V3)1549.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.613, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
7658, 2869, 2268
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.126, 1.11
No. of reflections2869
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.32

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the NNS (20902051), the Education Committee of Zhejiang Province (Z200906833), Ningbo Natural Science (2010 A610186) and the Ministry of Education Scientific Research Foundation for Returned Overseas Scholars.

References

First citationFabre, J. M. (2004). Chem. Rev. 104, 5133–5150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, Y. F., Zhang, J. S., Lin, Y. J., Dai, J. & Jin, G. X. (2007). J. Organomet. Chem. 692, 4545–4550.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Chem, 3, 1941–1944.  CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B.-T., Ding, J.-J. & Qu, G.-R. (2008). Acta Cryst. E64, o2078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q. Y., Liu, Y., Lu, Z. J., Wang, J. P., Huo, L. B., Qin, Y. R. & Dai, J. (2010). Synth. Met. 160, 713–717.  CrossRef CAS Google Scholar
First citationZhu, Q. Y., Liu, Y., Lu, W., Zhang, Y., Bian, G. Q., Niu, G. Y. & Dai, J. (2007). Inorg. Chem. 46, 10065–10070.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds