organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Adamantan-1-yl)-2-chloro­acetamide

aSchool of Chemistry, University of KwaZulu–Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu–Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 18 March 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, C12H18ClNO, which was synthesized as part of a study into potential anti­tuberculosis agents, the adamantine skeleton displays shorter than normal C—C bond lengths ranging between 1.5293 (18) and 1.5366 (15) Å. The structure also displays inter­molecular N—H⋯O hydrogen bonding, which forms an infinite chain in the a-axis direction.

Related literature

For background to the title compound, see: Plakhotnik et al. (1982[Plakhotnik, V. M., Kovtun, V. Y. & Yashunskii, V. G. (1982). Zh. Org. Khim. 18, 1001-1005.]). For the synthesis of the title compound, see: Lee et al. (2003[Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. J. (2003). J. Comb. Chem. 5, 172-187.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.], 2010[Bogatcheva, E., Hanrahan, C., Chen, P., Gearhart, J., Sacksteder, K., Einck, L., Nacy, C. & Protopopova, M. (2010). Bioorg. Med. Chem. Lett. 20, 201-205.]); Onajole et al. (2010[Onajole, O. K., van Govender, P., Heiden, P. D., Kruger, H. G., Maguire, G. E. M., Wiid, I. & Govender, T. (2010). Eur. J. Med. Chem. 45, 2075-2079.]). For related polycyclic structures, see: Venkataramanan et al. (2004[Venkataramanan, B., Saifudin, M.-A., Jagadese, J. V. & Suresh, V. (2004). CrystEngComm, 6, 284-289.]); Fokin et al., (2009[Fokin, A. A., Merz, A., Fokina, N. A., Schwertfeger, H., Liu, S. L., Dahl, J. E. P., Carlson, R. K. M. & Schreiner, P. R. (2009). Synthesis, 6, 909-912.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18ClNO

  • Mr = 227.72

  • Orthorhombic, P b c a

  • a = 9.3656 (2) Å

  • b = 13.7515 (3) Å

  • c = 18.7917 (4) Å

  • V = 2420.20 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.26 × 0.16 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.958

  • 5629 measured reflections

  • 3003 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.007

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 1.05

  • 3003 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 1.97 2.8301 (12) 165
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN; data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of an ongoing study into the anti-tuberculosis activity of admantane derivatives (Lee et al., 2003, Bogatcheva et al., 2006, 2010, Onajole et al., 2010), the title compound, an adamantane derivative, serves as a precursor in the synthesis of potential anti-tuberculosis agents (Onajole et al. 2010). Although, the compound is known (Plakhotnik et al., 1982), its crystal structure has not been reported.

The molecule displays a number of C—C bond lengths that are shorter than the expected bond length of 1.54 Å. These bonds range between 1.5293 (18) Å for C6—C7 to 1.5366 (16) for C1—C2 in the adamantine skeleton (Fig. 1). The structure exhibits intermolecular hydrogen bonding between N1 and O1 of adjacent molecules, which forms an infinite chain in the a-axis direction. The isopropyl (Venkataramanan et al., 2004) amide derivative has a similar bonding arrangement in its structure. Interestingly, the structure report for the bicyclic analogue of the title compund (Fokin et al., 2009) reveals no N–H···O hydrogen bonding in the crystal lattice.

Related literature top

For background to the title compound, see: Plakhotnik et al. (1982). For the synthesis of the title compound, see: Lee et al. (2003); Bogatcheva et al. (2006, 2010); Onajole et al. (2010). For related polycyclic structures, see: Venkataramanan et al. (2004); Fokin et al., (2009)

Experimental top

Amantadine.HCl (4 g, 26.5 mmol) was dissolved in dichloromethane (40 ml). To this solution was slowly added chloroacetyl chloride (2.987 g, 26.5 mmol) after which the reaction was refluxed gently for 2 h. The reaction mixture was filtered and the resultant solution was concentrated in vacuo. The crude product was purified on silica gel using dichloromethane:ethyl acetate (7:3) as eluent to give the title compound (6.52 g, 89%) as a white crystalline solid. Crystals suitable for X-ray analysis were grown in methanol at room temperature. Melting point: 357–359 K.

Refinement top

X-ray single-crystal intensity data were collected on a Nonius Kappa-CCD diffractometer using graphite monochromated MoKa radiation (l = 0.71073 Å). Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). The strategy for the data collections was evaluated using the Bruker Nonius "Collect" program (Nonius, 2000). Data were scaled and reduced using DENZO-SMN software (Otwinowski & Minor, 1997). Absorption corrections were performed using SADABS (Sheldrick, 2008). The structure was solved by direct methods and refined employing full-matrix least-squares with the program SHELXL97 (Sheldrick, 2008) refining on F2. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions in a riding model with Uiso set at 1.2 times those of their parent atoms and refined with simple bond length constraints (e.g. 0.88 Å for N—H and others 0.99 Å).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 40% probability level and all hydrogen atoms omitted for clarity. All non-hydrogen atoms are shown as ellipsoids with probability level of 40%.
N-(Adamantan-1-yl)-2-chloroacetamide top
Crystal data top
C12H18ClNOF(000) = 976
Mr = 227.72Dx = 1.250 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5629 reflections
a = 9.3656 (2) Åθ = 3.0–28.3°
b = 13.7515 (3) ŵ = 0.29 mm1
c = 18.7917 (4) ÅT = 173 K
V = 2420.20 (9) Å3Block, colourless
Z = 80.26 × 0.16 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3003 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.007
1.2° ϕ scans and ω scansθmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.928, Tmax = 0.958k = 1818
5629 measured reflectionsl = 2425
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.058P)2 + 0.664P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3003 reflectionsΔρmax = 0.26 e Å3
137 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (14)
Crystal data top
C12H18ClNOV = 2420.20 (9) Å3
Mr = 227.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.3656 (2) ŵ = 0.29 mm1
b = 13.7515 (3) ÅT = 173 K
c = 18.7917 (4) Å0.26 × 0.16 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3003 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2568 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.958Rint = 0.007
5629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3003 reflectionsΔρmin = 0.33 e Å3
137 parameters
Special details top

Experimental. X-ray single-crystal intensity data were collected on a Nonius Kappa-CCD diffractometer using graphite monochromated MoKa radiation (l = 0.71073?Å). Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). The strategy for the data collections was evaluated using the Bruker Nonius "Collect" program (Nonius, 2000). Data were scaled and reduced using DENZO-SMN software (Otwinowski & Minor, 1997). Absorption corrections were performed using SADABS (Sheldrick, 2008). The structure was solved by direct methods and refined employing full-matrix least-squares with the program SHELXL97 (Sheldrick, 2008) refining on F2. All non-hydrogen atoms were refined anisotropically. Half sphere of data collected using COLLECT strategy (Nonius, 2000). Crystal to detector distance = 30 mm; combination of ϕ and ω scans of 1.0°, 60 s per °, 2 iterations.

1H NMR (CDCl3, 600 MHz): δH 1.64 (m, 6H), 1.96 (m, 6H), 2.04 (s, 3H), 3.87 (s, 2H), 6.19 (s, NH).

13C NMR (CDCl3, 100 MHz); δC 29.3 (CH), 36.1 (CH2), 41.1 (CH2), 42.8 (CH2), 52.3 (C), 164.5 (C=O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14558 (4)0.52848 (3)0.15642 (2)0.04867 (14)
O10.10158 (8)0.66702 (7)0.27321 (5)0.0342 (2)
N10.33518 (9)0.70366 (7)0.29263 (5)0.0280 (2)
H10.42280.68890.27970.034*
C10.31869 (11)0.77662 (8)0.34943 (6)0.0246 (2)
C20.23383 (13)0.86513 (9)0.32293 (6)0.0316 (3)
H2A0.28090.89300.28040.038*
H2B0.13610.84480.30940.038*
C30.46993 (11)0.80966 (9)0.36968 (6)0.0304 (3)
H3A0.52620.75310.38630.037*
H3B0.51820.83740.32740.037*
C40.24600 (12)0.73351 (8)0.41519 (6)0.0278 (2)
H4A0.30120.67690.43250.033*
H4B0.14880.71100.40260.033*
C50.22636 (14)0.94200 (9)0.38192 (7)0.0360 (3)
H50.17100.99950.36450.043*
C60.37733 (15)0.97414 (9)0.40223 (8)0.0398 (3)
H6A0.42551.00290.36030.048*
H6B0.37261.02420.44000.048*
C70.46230 (12)0.88638 (9)0.42878 (7)0.0333 (3)
H70.56110.90740.44180.040*
C80.38820 (13)0.84361 (10)0.49427 (6)0.0343 (3)
H8A0.38330.89310.53240.041*
H8B0.44340.78740.51230.041*
C90.23705 (13)0.81098 (9)0.47388 (6)0.0316 (3)
H90.18860.78270.51660.038*
C100.15142 (13)0.89847 (10)0.44707 (7)0.0369 (3)
H10A0.14420.94800.48510.044*
H10B0.05360.87770.43410.044*
C110.22906 (11)0.65799 (8)0.25909 (6)0.0275 (2)
C120.28360 (14)0.59104 (11)0.20014 (7)0.0417 (3)
H12A0.35060.54320.22100.050*
H12B0.33700.63020.16490.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0435 (2)0.0562 (2)0.0463 (2)0.00949 (15)0.01151 (14)0.01454 (15)
O10.0177 (4)0.0510 (5)0.0338 (4)0.0016 (3)0.0025 (3)0.0013 (4)
N10.0165 (4)0.0365 (5)0.0311 (5)0.0006 (3)0.0008 (3)0.0052 (4)
C10.0186 (4)0.0289 (5)0.0263 (5)0.0003 (4)0.0003 (4)0.0008 (4)
C20.0311 (6)0.0326 (6)0.0313 (6)0.0019 (5)0.0032 (5)0.0047 (5)
C30.0196 (5)0.0377 (6)0.0340 (6)0.0036 (4)0.0005 (4)0.0040 (5)
C40.0259 (5)0.0288 (5)0.0287 (5)0.0026 (4)0.0014 (4)0.0022 (4)
C50.0370 (6)0.0284 (5)0.0425 (7)0.0061 (5)0.0044 (5)0.0009 (5)
C60.0448 (7)0.0296 (6)0.0450 (8)0.0077 (5)0.0000 (6)0.0006 (5)
C70.0251 (5)0.0375 (6)0.0371 (6)0.0067 (5)0.0017 (4)0.0062 (5)
C80.0338 (6)0.0390 (6)0.0302 (6)0.0002 (5)0.0050 (5)0.0048 (5)
C90.0297 (5)0.0376 (6)0.0274 (5)0.0026 (5)0.0039 (4)0.0006 (5)
C100.0291 (6)0.0408 (7)0.0407 (7)0.0054 (5)0.0025 (5)0.0089 (5)
C110.0211 (5)0.0350 (5)0.0264 (5)0.0015 (4)0.0021 (4)0.0013 (4)
C120.0292 (6)0.0578 (8)0.0380 (6)0.0083 (6)0.0008 (5)0.0170 (6)
Geometric parameters (Å, º) top
Cl1—C121.7567 (13)C5—C101.5329 (19)
O1—C111.2293 (13)C5—H51.0000
N1—C111.3340 (14)C6—C71.5293 (18)
N1—C11.4729 (14)C6—H6A0.9900
N1—H10.8800C6—H6B0.9900
C1—C41.5304 (15)C7—C81.5303 (17)
C1—C31.5354 (14)C7—H71.0000
C1—C21.5366 (15)C8—C91.5336 (16)
C2—C51.5334 (17)C8—H8A0.9900
C2—H2A0.9900C8—H8B0.9900
C2—H2B0.9900C9—C101.5312 (18)
C3—C71.5335 (16)C9—H91.0000
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
C4—C91.5357 (16)C11—C121.5283 (17)
C4—H4A0.9900C12—H12A0.9900
C4—H4B0.9900C12—H12B0.9900
C5—C61.5298 (18)
C11—N1—C1125.80 (9)C7—C6—H6B109.8
C11—N1—H1117.1C5—C6—H6B109.8
C1—N1—H1117.1H6A—C6—H6B108.2
N1—C1—C4111.59 (9)C6—C7—C8109.25 (10)
N1—C1—C3106.53 (9)C6—C7—C3109.32 (10)
C4—C1—C3108.95 (9)C8—C7—C3109.82 (10)
N1—C1—C2111.04 (9)C6—C7—H7109.5
C4—C1—C2109.78 (9)C8—C7—H7109.5
C3—C1—C2108.85 (9)C3—C7—H7109.5
C5—C2—C1109.59 (9)C7—C8—C9109.28 (10)
C5—C2—H2A109.8C7—C8—H8A109.8
C1—C2—H2A109.8C9—C8—H8A109.8
C5—C2—H2B109.8C7—C8—H8B109.8
C1—C2—H2B109.8C9—C8—H8B109.8
H2A—C2—H2B108.2H8A—C8—H8B108.3
C7—C3—C1109.89 (9)C10—C9—C8109.62 (10)
C7—C3—H3A109.7C10—C9—C4109.71 (10)
C1—C3—H3A109.7C8—C9—C4109.39 (9)
C7—C3—H3B109.7C10—C9—H9109.4
C1—C3—H3B109.7C8—C9—H9109.4
H3A—C3—H3B108.2C4—C9—H9109.4
C1—C4—C9109.61 (9)C9—C10—C5109.26 (10)
C1—C4—H4A109.7C9—C10—H10A109.8
C9—C4—H4A109.7C5—C10—H10A109.8
C1—C4—H4B109.7C9—C10—H10B109.8
C9—C4—H4B109.7C5—C10—H10B109.8
H4A—C4—H4B108.2H10A—C10—H10B108.3
C6—C5—C10109.68 (11)O1—C11—N1125.04 (11)
C6—C5—C2109.72 (10)O1—C11—C12122.81 (10)
C10—C5—C2109.21 (10)N1—C11—C12112.15 (9)
C6—C5—H5109.4C11—C12—Cl1112.84 (9)
C10—C5—H5109.4C11—C12—H12A109.0
C2—C5—H5109.4Cl1—C12—H12A109.0
C7—C6—C5109.53 (10)C11—C12—H12B109.0
C7—C6—H6A109.8Cl1—C12—H12B109.0
C5—C6—H6A109.8H12A—C12—H12B107.8
C11—N1—C1—C462.57 (14)C5—C6—C7—C359.83 (13)
C11—N1—C1—C3178.63 (11)C1—C3—C7—C660.28 (13)
C11—N1—C1—C260.26 (14)C1—C3—C7—C859.57 (13)
N1—C1—C2—C5176.69 (9)C6—C7—C8—C960.43 (13)
C4—C1—C2—C559.45 (12)C3—C7—C8—C959.46 (13)
C3—C1—C2—C559.73 (12)C7—C8—C9—C1060.35 (13)
N1—C1—C3—C7179.85 (9)C7—C8—C9—C459.99 (13)
C4—C1—C3—C759.64 (12)C1—C4—C9—C1059.49 (12)
C2—C1—C3—C760.05 (12)C1—C4—C9—C860.79 (12)
N1—C1—C4—C9177.60 (9)C8—C9—C10—C559.74 (13)
C3—C1—C4—C960.26 (11)C4—C9—C10—C560.40 (13)
C2—C1—C4—C958.85 (12)C6—C5—C10—C959.57 (13)
C1—C2—C5—C660.02 (13)C2—C5—C10—C960.70 (13)
C1—C2—C5—C1060.23 (13)C1—N1—C11—O13.61 (19)
C10—C5—C6—C760.04 (14)C1—N1—C11—C12176.78 (10)
C2—C5—C6—C759.92 (14)O1—C11—C12—Cl10.73 (17)
C5—C6—C7—C860.38 (13)N1—C11—C12—Cl1178.88 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.8301 (12)165
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H18ClNO
Mr227.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)9.3656 (2), 13.7515 (3), 18.7917 (4)
V3)2420.20 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.26 × 0.16 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5629, 3003, 2568
Rint0.007
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 1.05
No. of reflections3003
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.8301 (12)165
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

References

First citationBogatcheva, E., Hanrahan, C., Chen, P., Gearhart, J., Sacksteder, K., Einck, L., Nacy, C. & Protopopova, M. (2010). Bioorg. Med. Chem. Lett. 20, 201–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFokin, A. A., Merz, A., Fokina, N. A., Schwertfeger, H., Liu, S. L., Dahl, J. E. P., Carlson, R. K. M. & Schreiner, P. R. (2009). Synthesis, 6, 909–912.  CrossRef Google Scholar
First citationLee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. J. (2003). J. Comb. Chem. 5, 172–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOnajole, O. K., van Govender, P., Heiden, P. D., Kruger, H. G., Maguire, G. E. M., Wiid, I. & Govender, T. (2010). Eur. J. Med. Chem. 45, 2075–2079.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPlakhotnik, V. M., Kovtun, V. Y. & Yashunskii, V. G. (1982). Zh. Org. Khim. 18, 1001–1005.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenkataramanan, B., Saifudin, M.-A., Jagadese, J. V. & Suresh, V. (2004). CrystEngComm, 6, 284–289.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds